Skip to content
Related Articles

Related Articles

Matplotlib.colors.to_rgba() in Python
  • Last Updated : 21 Apr, 2020

Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.

matplotlib.colors.to_rgba()

The matplotlib.colors.to_rgba() function is used convert c(color) to an RGBA color. It converts the color name into an array of RGBA encoded colors. It returns an RGBA tuple of four floats from 0-1.

Syntax: matplotlib.colors.to_rgba(c, alpha=None)

Parameters:

  • c: It is a matplotlib color or a np.ma.masked color.
  • alpha: It is an optional parameter that accepts a scalar. It forces the alpha value if alpha is not None. But if c is “none”(case-sensetive) it maps to (0, 0, 0, 0).

Returns: It returns a tuple of scalars in the form of (r, g, b, a).



Example 1:




import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from matplotlib import colors as mcolors
import numpy as np
   
# simple example showing many
# lines in a single set of axes
x_axis = np.arange(100)
  
# Here are different sets of
# y to plot vs x
y_axis = x_axis[:50, np.newaxis] + x_axis[np.newaxis, :]
   
segements = np.zeros((50, 100, 2))
segements[:, :, 1] = y_axis
segements[:, :, 0] = x_axis
   
#some supported values to test 
# masked array :
segements = np.ma.masked_where((segements > 50) & (segements < 60),
                               segements)
   
# setting the plot limits.
figure, axes = plt.subplots()
axes.set_xlim(x_axis.min(), x_axis.max())
axes.set_ylim(y_axis.min(), y_axis.max())
   
# colors is sequence of rgba 
# tuples and .rgba implementation
colors = [mcolors.to_rgba(c)
          for c in plt.rcParams['axes.prop_cycle'].by_key()['color']]
   
line_segments = LineCollection(segements,
                               linewidths = (0.5, 1, 1.5, 2),
                               colors = colors,
                               linestyle = 'solid')
  
axes.add_collection(line_segments)
axes.set_title(' With masked arrays')
plt.show()

Output:
matplotlib.colors.to_rgba()

Example 2:




import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
  
  
# helper function to plot a color table
def colortable(colors, title, 
               colors_sort = True,
               emptycols = 0):
  
    # cell dimensions
    width = 212
    height = 22
    swatch_width = 48
    margin = 12
    topmargin = 40
  
    # Sorting colors bbased on hue,
    # saturation, value and name.
    # implementation of to_rgb
    if colors_sort is True:
        to_hsv = sorted((tuple(mcolors.rgb_to_hsv(mcolors.to_rgba(color)[:3])),
                         name)
                        for name, color in colors.items())
        names = [name for hsv, name in to_hsv]
    else:
        names = list(colors)
  
    length_of_names = len(names)
    length_cols = 4 - emptycols
    length_rows = length_of_names // length_cols + int(length_of_names % length_cols > 0)
  
    width2 = width * 4 + 2 * margin
    height2 = height * length_rows + margin + topmargin
    dpi = 72
  
    figure, axes = plt.subplots(figsize =(width2 / dpi, height2 / dpi), dpi = dpi)
    figure.subplots_adjust(margin / width2, margin / height2,
                           (width2-margin)/width2,
                           (height2-topmargin)/height2)
      
    axes.set_xlim(0, width * 4)
    axes.set_ylim(height * (length_rows-0.5), -height / 2.)
    axes.yaxis.set_visible(False)
    axes.xaxis.set_visible(False)
    axes.set_axis_off()
    axes.set_title(title, fontsize = 24, loc ="left", pad = 10)
  
    for i, name in enumerate(names):
        rows = i % length_rows
        cols = i // length_rows
        y = rows * height
  
        swatch_start_x = width * cols
        swatch_end_x = width * cols + swatch_width
        text_pos_x = width * cols + swatch_width + 7
  
        axes.text(text_pos_x, y, name, fontsize = 14,
                horizontalalignment ='left',
                verticalalignment ='center')
  
        axes.hlines(y, swatch_start_x, swatch_end_x,
                  color = colors[name], linewidth = 18)
  
    return figure
  
colortable(mcolors.BASE_COLORS, "Base Colors",
                colors_sort = False, emptycols = 1)
colortable(mcolors.TABLEAU_COLORS, "Tableau Palette",
                colors_sort = False, emptycols = 2)
colortable(mcolors.CSS4_COLORS, "CSS Colors")
  
plt.show()

Output:
matplotlib.colors.to_rgba()
matplotlib.colors.to_rgba()

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :