Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Matplotlib.colors.rgb_to_hsv() in Python

  • Difficulty Level : Easy
  • Last Updated : 07 Oct, 2021

Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.


The matplotlib.colors.rgb_to_hsv() function belongs to the matplotlib.colors module. The matplotlib.colors.rgb_to_hsv() function is used to convert float rgb in the range of 0 to 1 into a numpy array of hsv values.

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Syntax: matplotlib.colors.rgb_to_hsv(arr)


  • arr: It is an array-like argument in the form of (…, 3) where all values must to be in the range of 0 to 1.


  • hsv: It returns an ndarray in the form of (…, 3) that comprises of colors converted to hsv values within the range of 0 to 1.

Example 1:

import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
# helper function to plot a 
# color table
def colortable(colors, title, 
               colors_sort = True,
    # cell dimensions
    width = 212
    height = 22
    swatch_width = 48
    margin = 12
    topmargin = 40
    # Sorting colors based on hue,
    # saturation, value and name.
    if colors_sort is True:
        to_hsv = sorted((tuple(mcolors.rgb_to_hsv(mcolors.to_rgb(color))),
                        for name, color in colors.items())
        names = [name for hsv, name in to_hsv]
        names = list(colors)
    length_of_names = len(names)
    length_cols = 4 - emptycols
    length_rows = length_of_names // length_cols + int(length_of_names % length_cols > 0)
    width2 = width * 4 + 2 * margin
    height2 = height * length_rows + margin + topmargin
    dpi = 72
    figure, axes = plt.subplots(figsize=(width2 / dpi, height2 / dpi),
    figure.subplots_adjust(margin/width2, margin/height2,
    axes.set_xlim(0, width * 4)
    axes.set_ylim(height * (length_rows-0.5), -height/2.)
    axes.set_title(title, fontsize=24, loc="left", pad=10)
    for i, name in enumerate(names):
        rows = i % length_rows
        cols = i // length_rows
        y = rows * height
        swatch_start_x = width * cols
        swatch_end_x = width * cols + swatch_width
        text_pos_x = width * cols + swatch_width + 7
        axes.text(text_pos_x, y, name, fontsize=14,
        axes.hlines(y, swatch_start_x, swatch_end_x,
                  color=colors[name], linewidth=18)
    return figure
colortable(mcolors.BASE_COLORS, "Base Colors",
                colors_sort=False, emptycols=1)
colortable(mcolors.TABLEAU_COLORS, "Tableau Palette",
                colors_sort=False, emptycols=2)
colortable(mcolors.CSS4_COLORS, "CSS Colors")


Example 2:

Image Used:

import matplotlib
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
image = mpimg.imread('food.jpeg')
plt.title("Output image")
hsv = matplotlib.colors.rgb_to_hsv(image)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!