Skip to content
Related Articles

Related Articles

Improve Article

Matplotlib.axis.Axis.set_clip_path() function in Python

  • Last Updated : 10 Jun, 2020

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. It is an amazing visualization library in Python for 2D plots of arrays and used for working with the broader SciPy stack.

Matplotlib.axis.Axis.set_clip_path() Function

The Axis.set_clip_path() function in axis module of matplotlib library is used to set the artist’s clip path. 
 

Syntax: Axis.set_clip_path(self, path, transform=None) 

Parameters: This method accepts the following parameters. 

  • path: This parameter is the clip path.
  • transform: TThis parameter in which Path is converted to a TransformedPath using transform.

Return value: This method does not return any value. 



Below examples illustrate the matplotlib.axis.Axis.set_clip_path() function in matplotlib.axis:
Example 1: 

Input Image 
 

Python3




# Implementation of matplotlib function
from matplotlib.axis import Axis
import matplotlib.pyplot as plt  
import matplotlib.patches as patches  
import matplotlib.cbook as cbook  
       
      
with cbook.get_sample_data('geeksforgeeks-logo1.PNG') as image_file:  
    image = plt.imread(image_file)  
       
fig, ax = plt.subplots()  
im = ax.imshow(image)  
patch = patches.Rectangle((10, 10),  
                          560,  
                          500,   
                          transform = ax.transData)  
    
im.set_clip_path(patch)  
  
fig.suptitle('matplotlib.axis.Axis.set_clip_path() \
function Example\n', fontweight ="bold")  
    
plt.show() 

Output: 
 

Example 2:

Python3




# Implementation of matplotlib function
from matplotlib.axis import Axis
import numpy as np  
import matplotlib.cm as cm  
import matplotlib.pyplot as plt  
from matplotlib.path import Path  
from matplotlib.patches import PathPatch  
       
      
delta = 0.025
      
x = y = np.arange(-3.0, 3.0, delta)  
X, Y = np.meshgrid(x, y)  
      
Z1 = np.exp(-X**2 - Y**2)  
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)  
Z = (Z1 - Z2) * 2
       
path = Path([[0, 1], [1, 0], [0, -1],  
            [-1, 0], [0, 1]])  
patch = PathPatch(path, facecolor ='none')  
       
fig, ax = plt.subplots()  
ax.add_patch(patch)  
       
im = ax.imshow(Z,  
               interpolation ='bilinear',   
               cmap = cm.gray,  
               origin ='lower',   
               extent =[-3, 3, -3, 3],  
               clip_path = patch,   
               clip_on = True)  
im.set_clip_path(patch)  
  
fig.suptitle('matplotlib.axis.Axis.set_clip_path() \
function Example\n', fontweight ="bold")  
    
plt.show() 

Output:

 

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :