Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Matplotlib.axis.Axis.get_transformed_clip_path_and_affine() function in Python

  • Last Updated : 08 Jun, 2020

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. It is an amazing visualization library in Python for 2D plots of arrays and used for working with the broader SciPy stack.

matplotlib.axis.Axis.get_transformed_clip_path_and_affine() Function

The Axis.get_transformed_clip_path_and_affine() function in axis module of matplotlib library is used to get the clip path with the non-affine part of its transformation applied, and the remaining affine part of its transformation. 
 

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Syntax: Axis.get_transformed_clip_path_and_affine(self) 



Parameters: This method does not accepts any parameter. 
 

Return value: This method return the clip path with the non-affine part of its transformation applied, and the remaining affine part of its transformation. 

Below examples illustrate the matplotlib.axis.Axis.get_transformed_clip_path_and_affine() function in matplotlib.axis:
 

Example 1: 
 

Image used: 
 

Python3




# Implementation of matplotlib function
from matplotlib.axis import Axis
import matplotlib.pyplot as plt  
import matplotlib.patches as patches  
import matplotlib.cbook as cbook  
         
      
with cbook.get_sample_data('image.PNG') as image_file:  
    image = plt.imread(image_file)  
         
fig, ax = plt.subplots()  
im = ax.imshow(image)  
patch = patches.Rectangle((50, 50), 200, 200,   
                          transform = ax.transData)  
    
# use of get_transformed_clip_path_and_affine() method 
val = Axis.get_transformed_clip_path_and_affine(im) 
ax.set_title("Value Return by get_transformed_clip_path_and_affine(): " 
             + str(val)) 
  
fig.suptitle("""matplotlib.axis.Axis.get_transformed_clip_path_and_affine()
function Example\n""", fontweight ="bold")  
    
plt.show()

Output: 
 



Example 2:

Python3




# Implementation of matplotlib function
from matplotlib.axis import Axis
import numpy as np  
import matplotlib.cm as cm  
import matplotlib.pyplot as plt  
from matplotlib.path import Path  
from matplotlib.patches import PathPatch  
         
      
delta = 0.025
      
x = y = np.arange(-3.0, 3.0, delta)  
X, Y = np.meshgrid(x, y)  
      
Z1 = np.exp(-X**2 - Y**2)  
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)  
Z = (Z1 - Z2) * 2
         
path = Path([[0, 1], [1, 0], [0, -1], [-1, 0], [0, 1]])  
patch = PathPatch(path, facecolor ='none')  
         
fig, ax = plt.subplots()  
ax.add_patch(patch)  
im = ax.imshow(Z,  
               interpolation ='bilinear',   
               cmap = cm.gray,  
               origin ='lower',  
               extent =[-3, 3, -3, 3],  
               clip_path = patch,  
               clip_on = True
    
# use of get_transformed_clip_path_and_affine() method 
val = Axis.get_transformed_clip_path_and_affine(im) 
print("Value Return by get_transformed_clip_path_and_affine(): "
for i in val:  
    print(i)
      
fig.suptitle("""matplotlib.axis.Axis.get_transformed_clip_path_and_affine()
function Example\n""", fontweight ="bold")  
    
plt.show()

Output: 
 

 

Value Return by get_transformed_clip_path_and_affine(): 
Path(array([[ 0.,  1.],
       [ 1.,  0.],
       [ 0., -1.],
       [-1.,  0.],
       [ 0.,  1.]]), None)
Affine2D(
    [[ 82.66666667   0.         328.        ]
     [  0.          61.6        237.6       ]
     [  0.           0.           1.        ]])

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :