Related Articles

# Matplotlib.axis.Axis.get_smart_bounds() function in Python

• Last Updated : 08 Jun, 2020

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. It is an amazing visualization library in Python for 2D plots of arrays and used for working with the broader SciPy stack.

## Matplotlib.axis.Axis.get_smart_bounds() Function

The Axis.get_smart_bounds() function in axis module of matplotlib library is used to get whether the axis has smart bounds.

Syntax: Axis.get_smart_bounds(self)

Parameters: This method does not accepts any parameters.

Return value: This method return whether the axis has smart bounds.

Below examples illustrate the matplotlib.axis.Axis.get_smart_bounds() function in matplotlib.axis:

Example 1:

## Python3

 `# Implementation of matplotlib function``from` `matplotlib.axis ``import` `Axis``import` `numpy as np``import` `matplotlib.pyplot as plt`` ` ` ` `fig ``=` `plt.figure()``x ``=` `np.linspace(``-``np.pi, np.pi, ``100``)``y ``=` `2``*``np.sin(x)``  ` `ax ``=` `fig.add_subplot()``ax.set_title(``'centered spines'``)``ax.plot(x, y)`` ` `ax.spines[``'left'``].set_position(``'center'``)``ax.spines[``'right'``].set_color(``'none'``)``ax.spines[``'bottom'``].set_position(``'center'``)``ax.spines[``'top'``].set_color(``'none'``)`` ` `ax.xaxis.set_ticks_position(``'bottom'``)``ax.yaxis.set_ticks_position(``'left'``)``  ` `ax.grid()`` ` `print``(``"Value return by get_smart_bounds() : ["``,``      ``ax.xaxis.get_smart_bounds(),``      ``ax.yaxis.get_smart_bounds(),``"]"``)`` ` `fig.suptitle(``"""matplotlib.axis.Axis.get_smart_bounds()``function Example\n"""``, fontweight ``=``"bold")  ``   ` `plt.show()`

Output:

```Value return by get_smart_bounds() : [ False False ]
```

Example 2:

## Python3

 `# Implementation of matplotlib function``from` `matplotlib.axis ``import` `Axis``import` `numpy as np``import` `matplotlib.pyplot as plt`` ` ` ` `fig ``=` `plt.figure()``x ``=` `np.linspace(``-``np.pi, np.pi, ``100``)``y ``=` `2``*``np.sin(x)`` ` `ax ``=` `fig.add_subplot()``ax.set_title(``'Spines at data (3, 2)'``)``ax.plot(x, y)`` ` `ax.spines[``'left'``].set_position((``'data'``, ``3``))``ax.spines[``'right'``].set_color(``'none'``)``ax.spines[``'bottom'``].set_position((``'data'``, ``2``))``ax.spines[``'top'``].set_color(``'none'``)``ax.spines[``'left'``].set_smart_bounds(``True``)``ax.spines[``'bottom'``].set_smart_bounds(``True``)`` ` `ax.xaxis.set_ticks_position(``'bottom'``)``ax.yaxis.set_ticks_position(``'left'``)`` ` `ax.grid()`` ` `print``(``"Value return by get_smart_bounds() :"``, ``      ``ax.xaxis.get_smart_bounds())`` ` `fig.suptitle(``"""matplotlib.axis.Axis.get_smart_bounds()``function Example\n"""``, fontweight ``=``"bold")  ``   ` `plt.show()`

Output:

```Value return by get_smart_bounds() : True
```

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up