Skip to content
Related Articles

Related Articles

Improve Article
matplotlib.axes.Axes.stackplot() in Python
  • Last Updated : 13 Apr, 2020

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.

matplotlib.axes.Axes.stackplot() Function

The Axes.stackplot() function in axes module of matplotlib library is used to create a stacked area plo.

Syntax: Axes.stackplot(axes, x, *args, labels=(), colors=None, baseline=’zero’, data=None, **kwargs)

Parameters: This method accept the following parameters that are described below:

  • x: This parameter is the sequence of x coordinates.
  • y: This parameter is the sequence of y coordinates.
  • baseline: This parameter is the base line{‘zero’, ‘sym’, ‘wiggle’, ‘weighted_wiggle’}.
  • colors: This parameter is the list or tuple of colors.
  • label: This parameter is the label to assign to each data series.

Returns: This returns the following:

  • list: This returns the list of PolyCollection instances, one for each element in the stacked area plot.

Below examples illustrate the matplotlib.axes.Axes.stackplot() function in matplotlib.axes:


# Implementation of matplotlib function
import numpy as np
import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y1 = [1, 1, 2, 3, 5]
y2 = [0, 4, 2, 6, 8]
y3 = [1, 3, 5, 7, 9]
y = np.vstack([y1, y2, y3])
labels = ["Geeks1 ", "Geeks2", "Geeks3"]
fig, ax = plt.subplots()
ax.stackplot(x, y1, y2, y3, 
             labels = labels)
ax.legend(loc ='upper left')
ax.set_title('matplotlib.axes.Axes.stackplot Example')



# Implementation of matplotlib function
import numpy as np
import matplotlib.pyplot as plt
def GFG(n, m):
    def geeks(a):
        x = 1 / (.1 + np.random.random())
        y = 2 * np.random.random() - .5
        z = 10 / (.1 + np.random.random())
        for i in range(m):
            w = (i / m - y) * z
            a[i] += x * np.exp(-w * w)
    a = np.zeros((m, n))
    for i in range(n):
        for j in range(5):
            geeks(a[:, i])
    return a
test = GFG(3, 100)
fig, ax = plt.subplots()
ax.stackplot(range(100), test.T,
             baseline ='wiggle')
ax.set_title('matplotlib.axes.Axes.stackplot Example')

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :