Related Articles

# Matplotlib.axes.Axes.set_xticklabels() in Python

• Last Updated : 21 Apr, 2020

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.

## matplotlib.axes.Axes.set_xticklabels() Function

The Axes.set_xticklabels() function in axes module of matplotlib library is used to Set the x-tick labels with list of string labels.

Syntax: Axes.set_xticklabels(self, labels, fontdict=None, minor=False, **kwargs)

Parameters: This method accepts the following parameters.

• labels : This parameter is the list of of string labels.
• fontdict : This parameter is the dictionary controlling the appearance of the ticklabels.
• minor : This parameter is used whether set major ticks or to set minor ticks

Return value: This method returns a list of Text instances.

Below examples illustrate the matplotlib.axes.Axes.set_xticklabels() function in matplotlib.axes:

Example 1:

 # Implementation of matplotlib functionimport numpy as npimport matplotlib.pyplot as pltfrom matplotlib.patches import Polygon        def func(x):    return (x - 4) * (x - 6) * (x - 5) + 100        a, b = 2, 9  # integral limitsx = np.linspace(0, 10)y = func(x)    fig, ax = plt.subplots()ax.plot(x, y, "k", linewidth = 2)ax.set_ylim(bottom = 0)    # Make the shaded regionix = np.linspace(a, b)iy = func(ix)verts = [(a, 0), *zip(ix, iy), (b, 0)]  poly = Polygon(verts, facecolor ='green',               edgecolor ='0.5', alpha = 0.4)ax.add_patch(poly)    ax.text(0.5 * (a + b), 30,         r"$\int_a ^ b f(x)\mathrm{d}x$",        horizontalalignment ='center',         fontsize = 20)    fig.text(0.9, 0.05, '$x$')fig.text(0.1, 0.9, '$y$')    ax.spines['right'].set_visible(False)ax.spines['top'].set_visible(False)  ax.set_xticks((a, b-a, b))ax.set_xticklabels(('$a$', '$valx$', '$b$'))    fig.suptitle('matplotlib.axes.Axes.set_xticklabels() \function Example\n\n', fontweight ="bold")fig.canvas.draw()plt.show()

Output:

Example 2:

 # Implementation of matplotlib functionimport numpy as npimport matplotlib.pyplot as plt    # Fixing random state for reproducibilitynp.random.seed(19680801)    x = np.linspace(0, 2 * np.pi, 100)y = np.sin(x)y2 = y + 0.2 * np.random.normal(size = x.shape)    fig, ax = plt.subplots()ax.plot(x, y)ax.plot(x, y2)   ax.set_xticks([0, np.pi, 2 * np.pi])ax.set_xticklabels(['0', r'$\pi$', r'2$\pi$'])    ax.spines['left'].set_bounds(-1, 1)ax.spines['right'].set_visible(False)ax.spines['top'].set_visible(False)    fig.suptitle('matplotlib.axes.Axes.set_xticklabels() \function Example\n\n', fontweight ="bold")fig.canvas.draw()plt.show()

Output:

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up