Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Matplotlib.axes.Axes.set_xlabel() in Python

  • Last Updated : 19 Apr, 2020

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.

matplotlib.axes.Axes.set_xlabel() Function

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

The Axes.set_xlabel() function in axes module of matplotlib library is used to set the label for the x-axis.

Syntax: Axes.set_xlabel(self, xlabel, fontdict=None, labelpad=None, **kwargs)



Parameters: This method accepts the following parameters.

  • xlabel : This parameter is the label text.
  • labelpad : This parameter is the spacing in points from the axes bounding box including ticks and tick labels.

Returns:This method does not returns any value.

Below examples illustrate the matplotlib.axes.Axes.set_xlabel() function in matplotlib.axes:

Example 1:




import matplotlib.pyplot as plt
import numpy as np
  
t = np.arange(0.01, 5.0, 0.01)
s = np.exp(-t)
  
fig, ax = plt.subplots()
  
ax.plot(t, s)
ax.set_xlim(5, 0)
ax.set_xlabel('Display X-axis Label'
               fontweight ='bold')
ax.grid(True)
  
ax.set_title('matplotlib.axes.Axes.set_xlabel()\
 Examples\n', fontsize = 14, fontweight ='bold')
plt.show()

Output:

Example 2:




# Implementation of matplotlib function
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cbook as cbook
  
with cbook.get_sample_data('goog.npz') as datafile:
    price_data = np.load(datafile)['price_data'].view(np.recarray)
      
# get the most recent 250
# trading days
price_data = price_data[-250:]  
  
delta1 = np.diff(price_data.adj_close)/price_data.adj_close[:-1]
  
volume = (25 * price_data.volume[:-2] / price_data.volume[0])**3
close = (0.03 * price_data.close[:-2] / 0.03 * price_data.open[:-2])**2
  
fig, ax = plt.subplots()
ax.scatter(delta1[:-1], delta1[1:],
           c = close, s = volume,
           alpha = 0.5)
  
ax.set_xlabel(r'X-axis contains $\Delta_i$ values',
              fontweight ='bold')
ax.grid(True)
fig.suptitle('matplotlib.axes.Axes.set_xlabel() Examples\n',
             fontsize = 14, fontweight ='bold')
  
plt.show()

Output:




My Personal Notes arrow_drop_up
Recommended Articles
Page :