Skip to content
Related Articles
Open in App
Not now

Related Articles

Matplotlib.axes.Axes.set_sketch_params() in Python

Improve Article
Save Article
  • Last Updated : 30 Apr, 2020
Improve Article
Save Article

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.

matplotlib.axes.Axes.set_sketch_params() Function

The Axes.set_sketch_params() function in axes module of matplotlib library is used to sets the sketch parameters.

Syntax: Axes.set_sketch_params(self, scale=None, length=None, randomness=None)

Parameters: This method accepts only three parameters.

  • scale : This parameter is the amplitude of the wiggle perpendicular to the source line, in pixels.
  • length : This parameter is the length of the wiggle along the line, in pixels.
  • randomness : This parameter is the scale factor by which the length is shrunken or expanded.

Returns: This method does not return any value.

Below examples illustrate the matplotlib.axes.Axes.set_sketch_params() function in matplotlib.axes:

Example 1:




# Implementation of matplotlib function
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import matplotlib.gridspec as gridspec
import numpy as np
    
    
plt.rcParams['savefig.facecolor'] = "0.8"
plt.rcParams['figure.figsize'] = 6, 5
    
fig, ax = plt.subplots()
    
ax.plot([1, 2])
    
ax.locator_params("x", nbins = 3)
ax.locator_params("y", nbins = 5)
    
ax.set_xlabel('x-label')
ax.set_ylabel('y-label')
  
ax.set_sketch_params(100, 100, 20)
    
fig.suptitle('matplotlib.axes.Axes.set_sketch_params() \
function Example\n\n', fontweight ="bold")
  
plt.show()

Output:

Example 2:




# Implementation of matplotlib function
import matplotlib.pyplot as plt
import numpy as np
   
values = np.array([
    0.015, 0.166, 0.133
    0.159, 0.041, 0.024,
    0.195, 0.039, 0.161,
    0.018, 0.143, 0.056,
    0.125, 0.096, 0.094,
    0.051, 0.043, 0.021,
    0.138, 0.075, 0.109,
    0.195, 0.050, 0.074
    0.079, 0.155, 0.020,
    0.010, 0.061, 0.008])
   
values[[3, 14]] += .8
   
fig, (ax, ax2) = plt.subplots(2, 1, sharex = True)
   
ax.plot(values, "o-", color ="green")
ax2.plot(values, "o-", color ="green")
   
ax.set_ylim(.78, 1.
ax2.set_ylim(0, .22)
   
ax.spines['bottom'].set_visible(False)
ax2.spines['top'].set_visible(False)
ax.xaxis.tick_top()
ax.tick_params(labeltop = False)
ax2.xaxis.tick_bottom()
   
d = .005
kwargs = dict(transform = ax.transAxes, 
              color ='k', clip_on = False)
  
ax.plot((-d, +d), (-d, +d), **kwargs)       
ax.plot((1 - d, 1 + d), (-d, +d), **kwargs) 
   
kwargs.update(transform = ax2.transAxes)  
  
ax2.plot((-d, +d), (1 - d, 1 + d), **kwargs)
ax2.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) 
  
ax.set_sketch_params(1.0, 100.0, 22.0)
ax2.set_sketch_params(1.0, 100.0, 22.0)  
  
fig.suptitle('matplotlib.axes.Axes.set_sketch_params() \
function Example\n\n', fontweight ="bold")
  
plt.show()

Output:


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!