Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Matplotlib.axes.Axes.hlines() in Python

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.

matplotlib.axes.Axes.hlines() Function

The Axes.hlines() function in axes module of matplotlib library is used to Plot vertical lines at each y from xmin to xmax.

Syntax: Axes.hlines(self, y, xmin, xmax, colors=’k’, linestyles=’solid’, label=”, *, data=None, **kwargs)

Parameters: This method accept the following parameters that are described below:

  • y: This parameter is the sequence of y-indexes where to plot the lines.
  • xmin, xmax: These parameter contains an array.And they represents the beginning and end of each line.
  • colors: This parameter is an optional parameter. And it is the color of the lines with default value k.
  • linetsyle: This parameter is also an optional parameter. And it is used to represent the linestyle{‘solid’, ‘dashed’, ‘dashdot’, ‘dotted’}.
  • label: This parameter is also an optional parameter.It is the label of the plot.

Returns: This returns the LineCollection.

Below examples illustrate the matplotlib.axes.Axes.hlines() function in matplotlib.axes:

Example #1:




# Implementation of matplotlib function
       
import numpy as np
from matplotlib import patches
import matplotlib.pyplot as plt
   
fig, ax = plt.subplots()
ax.hlines([1, 3, 5], -3, 5, color ="green")
ax.set_title('matplotlib.axes.Axes.hlines Example')
  
plt.show()

Output:

Example #2:




# Implementation of matplotlib function
       
import numpy as np
from matplotlib import patches
import matplotlib.pyplot as plt
   
t = np.arange(0.0, 5.0, 0.1)
s = np.exp(-t) + np.cos(3 * np.pi * t) + np.sin(np.pi * t)
nse = np.random.normal(0.0, 0.8, t.shape) * s
  
fig, ax = plt.subplots()
  
ax.hlines(t, [0], s)
ax.set_xlabel('time (s)')
ax.hlines([1, 3, 5], -3, 5, color ="lightgreen")
ax.set_title('matplotlib.axes.Axes.hlines Example')
  
plt.show()

Output:


My Personal Notes arrow_drop_up
Last Updated : 13 Apr, 2020
Like Article
Save Article
Similar Reads
Related Tutorials