Skip to content
Related Articles

Related Articles

Improve Article
Matplotlib.axes.Axes.get_snap() in Python
  • Last Updated : 30 Apr, 2020

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.

matplotlib.axes.Axes.get_snap() Function

The Axes.get_snap() function in axes module of matplotlib library is used to get the snap setting.

Syntax: Axes.get_snap(self)

Parameters: This method does not accepts any parameter.

Returns: This method return the snap setting.

Below examples illustrate the matplotlib.axes.Axes.get_snap() function in matplotlib.axes:

Example 1:

# Implementation of matplotlib function
import matplotlib.pyplot as plt
from mpl_toolkits.axisartist.axislines import Subplot
fig = plt.figure()
ax = Subplot(fig, 111)
ax.text(0.3, 0.5, "Snap Setting : "
        fontweight ="bold")
fig.suptitle('matplotlib.axes.Axes.get_snap() \
function Example\n', fontweight ="bold")


Example 2:

# Implementation of matplotlib function
import numpy as np
import as cm
import matplotlib.pyplot as plt
import matplotlib.cbook as cbook
from matplotlib.path import Path
from matplotlib.patches import PathPatch
delta = 0.025
x = y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2
path = Path([[0, 1], [1, 0], [0, -1], 
            [-1, 0], [0, 1]])
patch = PathPatch(path, facecolor ='none')
fig, ax = plt.subplots()
im = ax.imshow(Z, interpolation ='bilinear',
               cmap = cm.gray,
               origin ='lower',
               extent =[-3, 3, -3, 3],
               clip_path = patch, 
               clip_on = True)
ax.text(-1.3, 2, "Snap Setting : "
        fontweight ="bold")
 function Example', fontweight ="bold")


 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :