Matplotlib.artist.Artist.properties() in Python

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Artist class contains Abstract base class for objects that render into a FigureCanvas. All visible elements in a figure are subclasses of Artist.

matplotlib.artist.Artist.properties() method

The properties() method in artist module of matplotlib library is used to get the dictionary of all the properties of the artist.

Syntax: Artist.properties(self)

Parameters: This method does not accepts any parameters.

Returns: This method return dictionary of all the properties of the artist.



Below examples illustrate the matplotlib.artist.Artist.properties() function in matplotlib:

Example 1:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Implementation of matplotlib function
from matplotlib.artist import Artist
import numpy as np  
import matplotlib.pyplot as plt  
        
  
xx = np.random.rand(16, 30)  
        
fig, ax = plt.subplots()  
        
m = ax.pcolor(xx)  
m.set_zorder(-20
    
w = Artist.properties(ax) 
print("Display all Properties\n"
for i in w: 
    print(i, ":", w[i]) 
      
fig.suptitle('matplotlib.artist.Artist.properties() \
function Example', fontweight ="bold"
  
plt.show()

chevron_right


Output:

Display all Properties

adjustable : box
agg_filter : None
alpha : None
anchor : C
animated : False
aspect : auto
autoscale_on : True
autoscalex_on : True
autoscaley_on : True
axes_locator : None
axisbelow : line
children : [<matplotlib.collections.PolyCollection object at 0x0ABB8470>, <.spines.Spine object at 0x08221EF0>, <matplotlib.spines.Spine object at 0x08221F90>, <matplotlib.spines.Spine object at 0x08237050>, <matplotlib.spines.Spine object at 0x082370F0>, <matplotlib.axis.XAxis object at 0x08221E70>, <matplotlib.axis.YAxis object at 0x08237370>, Text(0.5, 1.0, ”), Text(0.0, 1.0, ”), Text(1.0, 1.0, ”), <matplotlib.patches.Rectangle object at 0x0824CD90>]
clip_box : None
clip_on : True
clip_path : None
contains : None
data_ratio : 0.5333333333333333
default_bbox_extra_artists : [<matplotlib.collections.PolyCollection object at 0x0ABB8470>, <matplotlib.spines.Spine object at 0x08221EF0>, <matplotlib.spines.Spine object at 0x08221F90>, <matplotlib.spines.Spine object at 0x08237050>, <matplotlib.spines.Spine object at 0x082370F0>, <matplotlib.axis.XAxis object at 0x08221E70>, <matplotlib.axis.YAxis object at 0x08237370>, Text(0.5, 1.0, ”), Text(0.0, 1.0, ”), Text(1.0, 1.0, ”), <matplotlib.patches.Rectangle object at 0x0824CD90>]
facecolor : (1.0, 1.0, 1.0, 1.0)
fc : (1.0, 1.0, 1.0, 1.0)
figure : Figure(640×480)
frame_on : True
geometry : (1, 1, 1)
gid : None
gridspec : GridSpec(1, 1)
images : <a list of 0 AxesImage objects>
in_layout : True
label :
legend : None
legend_handles_labels : ([], [])
lines : <a list of 0 Line2D objects>
navigate : True
navigate_mode : None
path_effects : []
picker : None
position : Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88)
rasterization_zorder : None
rasterized : None
renderer_cache : None
shared_x_axes :<matplotlib.cbook.Grouper object at 0x080ACD70>
shared_y_axes : <matplotlib.cbook.Grouper object at 0x080B8BB0>
sketch_params : None
snap : None
subplotspec : <matplotlib.gridspec.SubplotSpec object at 0x07428ED0>
title :
transform : IdentityTransform()
transformed_clip_path_and_affine : (None, None)
url : None
visible : True
window_extent : TransformedBbox(
Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(
[[100. 0. 0.]
[ 0. 100. 0.]
[ 0. 0. 1.]]))))
xaxis : XAxis(80.0, 52.8)
xaxis_transform : BlendedGenericTransform(
CompositeGenericTransform(
TransformWrapper(
BlendedAffine2D(
IdentityTransform(),
IdentityTransform())),
CompositeGenericTransform(
BboxTransformFrom(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=30.0, y1=16.0),
TransformWrapper(
BlendedAffine2D(
IdentityTransform(),
IdentityTransform())))),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(
[[100. 0. 0.]
[ 0. 100. 0.]
[ 0. 0. 1.]]))))))),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(
[[100. 0. 0.]
[ 0. 100. 0.]
[ 0. 0. 1.]]))))))
xbound : (0.0, 30.0)
xgridlines : <a list of 7 Line2D gridline objects>
xlabel :
xlim : (0.0, 30.0)
xmajorticklabels : <a list of 7 Text major ticklabel objects>
xminorticklabels : <a list of 0 Text minor ticklabel objects>
xscale : linear
xticklabels : <a list of 7 Text major ticklabel objects>
xticklines : <a list of 14 Line2D ticklines objects>
xticks : [ 0. 5. 10. 15. 20. 25. 30.]
yaxis : YAxis(80.0, 52.8)
yaxis_transform : BlendedGenericTransform(
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(
[[100. 0. 0.]
[ 0. 100. 0.]
[ 0. 0. 1.]]))))),
CompositeGenericTransform(
TransformWrapper(
BlendedAffine2D(
IdentityTransform(),
IdentityTransform())),
CompositeGenericTransform(
BboxTransformFrom(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=30.0, y1=16.0),
TransformWrapper(
BlendedAffine2D(
IdentityTransform(),
IdentityTransform())))),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(
[[100. 0. 0.]
[ 0. 100. 0.]
[ 0. 0. 1.]]))))))))
ybound : (0.0, 16.0)
ygridlines : <a list of 9 Line2D gridline objects>
ylabel :
ylim : (0.0, 16.0)
ymajorticklabels : <a list of 9 Text major ticklabel objects>
yminorticklabels : <a list of 0 Text minor ticklabel objects>
yscale : linear
yticklabels : <a list of 9 Text major ticklabel objects>
yticklines : <a list of 18 Line2D ticklines objects>
yticks : [ 0. 2. 4. 6. 8. 10. 12. 14. 16.]
zorder : 0

Example 2:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Implementation of matplotlib function
from matplotlib.artist import Artist
import matplotlib.pyplot as plt 
import numpy as np 
  
          
np.random.seed(10**7
geeks = np.random.randn(100
     
fig, ax = plt.subplots() 
ax.acorr(geeks, usevlines = True
         normed = True
         maxlags = 80, lw = 3
    
ax.grid(True
    
w = Artist.properties(ax) 
print("Display all Properties\n"
for i in w: 
    print(i, ":", w[i]) 
      
fig.suptitle('matplotlib.artist.Artist.properties() \
function Example', fontweight ="bold"
  
plt.show()

chevron_right


Output:

Display all Properties

adjustable : box
agg_filter : None
alpha : None
anchor : C
animated : False
aspect : auto
autoscale_on : True
autoscalex_on : True
autoscaley_on : True
axes_locator : None
axisbelow : line
children : [<matplotlib.collections.LineCollection object at 0x0AAE84F0>, <matplotlib.lines.Line2D object at 0x0AAE84D0>, <matplotlib.spines.Spine object at 0x08151F50>, <matplotlib.spines.Spine object at 0x08151FF0>, <matplotlib.spines.Spine object at 0x081670B0>, <matplotlib.spines.Spine object at 0x08167150>, <matplotlib.axis.XAxis object at 0x08151ED0>, <matplotlib.axis.YAxis object at 0x081673D0>, Text(0.5, 1.0, ”), Text(0.0, 1.0, ”), Text(1.0, 1.0, ”), <matplotlib.patches.Rectangle object at 0x0817CDF0>]
clip_box : None
clip_on : True
clip_path : None
contains : None
data_ratio : 0.007741698372824119
default_bbox_extra_artists : [<matplotlib.collections.LineCollection object at 0x0AAE84F0>, <matplotlib.lines.Line2D object at 0x0AAE84D0>, <matplotlib.spines.Spine object at 0x08151F50>, <matplotlib.spines.Spine object at 0x08151FF0>, <matplotlib.spines.Spine object at 0x081670B0>, <matplotlib.spines.Spine object at 0x08167150>, <matplotlib.axis.XAxis object at 0x08151ED0>, <matplotlib.axis.YAxis object at 0x081673D0>, Text(0.5, 1.0, ”), Text(0.0, 1.0, ”), Text(1.0, 1.0, ”), <matplotlib.patches.Rectangle object at 0x0817CDF0>]
facecolor : (1.0, 1.0, 1.0, 1.0)
fc : (1.0, 1.0, 1.0, 1.0)
figure : Figure(640×480)
frame_on : True
geometry : (1, 1, 1)
gid : None
gridspec : GridSpec(1, 1)
images : <a list of 0 AxesImage objects>
in_layout : True
label :
legend : None
legend_handles_labels : ([], [])
lines : <a list of 1 Line2D objects>
navigate : True
navigate_mode : None
path_effects : []
picker : None
position : Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88)
rasterization_zorder : None
rasterized : None
renderer_cache : None
shared_x_axes : <matplotlib.cbook.Grouper object at 0x07FDCDB0>
shared_y_axes : <matplotlib.cbook.Grouper object at 0x07FE8BF0>
sketch_params : None
snap : None
subplotspec : <matplotlib.gridspec.SubplotSpec object at 0x07358F70>
title :
transform : IdentityTransform()
transformed_clip_path_and_affine : (None, None)
url : None
visible : True
window_extent : TransformedBbox(
Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(
[[100. 0. 0.]
[ 0. 100. 0.]
[ 0. 0. 1.]]))))
xaxis : XAxis(80.0, 52.8)
xaxis_transform : BlendedGenericTransform(
CompositeGenericTransform(
TransformWrapper(
BlendedAffine2D(
IdentityTransform(),
IdentityTransform())),
CompositeGenericTransform(
BboxTransformFrom(
TransformedBbox(
Bbox(x0=-88.0, y0=-0.300605326634452, x1=88.0, y1=1.061933586982593),
TransformWrapper(
BlendedAffine2D(
IdentityTransform(),
IdentityTransform())))),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(
[[100. 0. 0.]
[ 0. 100. 0.]
[ 0. 0. 1.]]))))))),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(
[[100. 0. 0.]
[ 0. 100. 0.]
[ 0. 0. 1.]]))))))
xbound : (-88.0, 88.0)
xgridlines : <a list of 11 Line2D gridline objects>
xlabel :
xlim : (-88.0, 88.0)
xmajorticklabels :<a list of 11 Text major ticklabel objects>
xminorticklabels : <a list of 0 Text minor ticklabel objects>
xscale : linear
xticklabels : <a list of 11 Text major ticklabel objects>
xticklines : <a list of 22 Line2D ticklines objects>
xticks : [-100. -80. -60. -40. -20. 0. 20. 40. 60. 80. 100.]
yaxis : YAxis(80.0, 52.8)
yaxis_transform : BlendedGenericTransform(
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(
[[100. 0. 0.]
[ 0. 100. 0.]
[ 0. 0. 1.]]))))),
CompositeGenericTransform(
TransformWrapper(
BlendedAffine2D(
IdentityTransform(),
IdentityTransform())),
CompositeGenericTransform(
BboxTransformFrom(
TransformedBbox(
Bbox(x0=-88.0, y0=-0.300605326634452, x1=88.0, y1=1.061933586982593),
TransformWrapper(
BlendedAffine2D(
IdentityTransform(),
IdentityTransform())))),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(
TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(
[[100. 0. 0.]
[ 0. 100. 0.]
[ 0. 0. 1.]]))))))))
ybound : (-0.300605326634452, 1.061933586982593)
ygridlines : <a list of 9 Line2D gridline objects>
ylabel :
ylim : (-0.300605326634452, 1.061933586982593)
ymajorticklabels : <a list of 9 Text major ticklabel objects>
yminorticklabels : <a list of 0 Text minor ticklabel objects>
yscale : linear
yticklabels : <a list of 9 Text major ticklabel objects>
yticklines : <a list of 18 Line2D ticklines objects>
yticks : [-0.4 -0.2 0. 0.2 0.4 0.6 0.8 1. 1.2]
zorder : 0

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up

Small things always make you to think big

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.