Mathematics | Generating Functions – Set 2



Prerequisite – Generating Functions-Introduction and Prerequisites
In Set 1 we came to know basics about Generating Functions. Now we will discuss more details on Generating Functions and its applications.

Exponential Generating Functions –
Let  h_0, h_1, h_2, ........., h_n, ...... e a sequence. Then its exponential generating function, denoted by  g^e(x) is given by,

 g^e(x) =\sum_{n=0}^{+\infty} \frac{x^n}{n!} h_n

Example 1:- Let {1, 1, 1…….} be a sequence . The generating function of the sequence is
 g^e(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!} ( Here  h_n =1 for all n )
Example 2:- Let  perm{n}{k} be number of k permutation in an n- element set. Then the exponential generating function for the sequence  ^nP_0, ^nP_1, ......., ^nP_n is

 g^e(x) =\sum_{k=0}^{n} \frac{x^n}{n!} ^nP_k                                                   = \sum_{k=0}^{n} \frac{x^k}{k!} \frac{n!}{(n-k)!}                                                   =  \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} x_k                                                   = \sum_{k=0}^{n} \^nC_k x_k                                                   =(1+x)^n



Exponential Generating Function is used to determine number of n-permutation of a set containing repeatative elements. We will see examples later on.

Using Generating Functions to Solve Recurrence Relations –
Linear homogeneous recurrence relations can be solved using generating function .We will take an example here to illustrate .

Example :- Solve the linear homogeneous recurrence equation  h_n=5h_{n-1}+6h_{n-2} .
Given h_0=1 and h_1=-2.

We use generating function to solve this problem. Let g(x) be the generating function of the sequence  h_0, h_1, h_2, ......, h_n, .....
Hence g(x)=h_0+h_1 x + h_2 x^2 +........+ h_n x^n+....
So we get the following equations.
g(x)=h_0+h_1 x + h_2 x^2 +........+ h_n x^n+....

-5xg(x)= -h_0x+h_1 x^2 + h_2 x^3 +........+ h_n x^n+1+....

6x^2g(x)=h_0 x^2+h_1 x^3 + h_2 x^4 +........+ h_n x^n+2+....

Adding these 3 quantities we obtain
  (1+5-6x^2)g(x)=h_0 + (h_1-5h_0)x +(h_2-5h_1+6h_0)+....... +(h_n-5h_{n-1}+6h_{n-2})x^n+.....

Now h_n-5h_{n-1}+6h_{n-2}=0 for all n>1. So,

  (1+5x-6x^2)g(x)=h_0 + (h_1-5h_0)x = (1-7x)

Or g(x)=\frac{(1-7x)}{(1+5-6x^2)}



Now (1+5x-6x^2)=(1-2x)(1-3x)

So, g(x)=\frac{(1-7x)}{(1-2x)(1-3x)}

It is easy to see that \frac{(1-7x)}{(1-2x)(1-3x)}=\frac{5}{(1-2x)}-\frac{4}{(1-3x)}

Now \frac{1}{(1-2x)}=1 + 2x+2^2 x^2 +2^3 x^3+.... +2^n x^n+......
And \frac{1}{(1-3x)}=1 + 3x+3^2 x^2 +3^3 x^3+.... +3^n x^n+......

So g(x)=5(1 + 2x+2^2 x^2 +2^3 x^3+.... +2^n x^n+......)-4(1 + 3x+3^2 x^2 +3^3 x^3+.... +3^n x^n+......)

Since this is the generating function for the sequence h_0, h_1, ......h_n We observe that h_n=5*2^n-4*3^n

Thus we can solve recurrence equations using generating functions.

Proving Identities via Generating Functions –
Various identities also can also be proved using generating functions.Here we illustrate one of them.

Example: Prove that : ^nC_r=^{(n-1)}C_r+^{(n-1)}C_{r-1}
Here we use the generating function of the sequence ^nC_0, ^nC_1, ......^nC_r.... i.e (1+x)^n.
Now, (1+x)^n=(1+x)^{n-1}(1+x)=(1+x)^{n-1}+x(1+x)^{n-1}
For LHS the term containingx^n is ^nC_r.For RHS the term containingx^n is ^{(n-1)}C_r+^{(n-1)}C_{r-1}. So ^nC_r=^{(n-1)}C_r+^{(n-1)}C_{r-1}(proved)

Links of Various examples are given below regarding generating functions.

  1. GATE CS 2018 | Question 18
  2. GATE-CS-2017 (Set 2) | Question 52


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.




Article Tags :

Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.