Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

Mahotas – Threshold Adjacency Statistics

  • Last Updated : 26 May, 2021

In this article we will see how we can get the image’s threshold adjacency statistics feature in mahotas. TAS were presented by Hamilton et al. in “Fast automated cell phenotype image classification”. TAS give original parameters unlike PFTAS which gives a variation without any hardcoded parameters.
For this tutorial we will use ‘lena’ image, below is the command to load the lena image 
 

mahotas.demos.load('lena')

Below is the lena image 
 

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course



 

In order to do this we will use mahotas.features.tas method
Syntax : mahotas.features.tas(img)
Argument : It takes image object as argument
Return : It returns 1-D array 
 

Note : Input image should be filtered or should be loaded as grey
In order to filter the image we will take the image object which is numpy.ndarray and filter it with the help of indexing, below is the command to do this
 

image = image[:, :, 0]

Below is the implementation 
 

Python3




# importing required libraries
import mahotas
import mahotas.demos
from pylab import gray, imshow, show
import numpy as np
import matplotlib.pyplot as plt
   
# loading image
img = mahotas.demos.load('lena')
   
# filtering image
img = img.max(2)
 
print("Image")
   
# showing image
imshow(img)
show()
 
# computing tas
value = mahotas.features.tas(img)
  
 
# printing value
print(value)

Output :
 

Image

 



 

[8.18235887e-01 4.96278071e-02 3.85778412e-02 5.42293510e-02
 2.31141496e-02 8.96518478e-03 4.17582280e-03 2.30390223e-03
 7.70054279e-04 8.11830699e-01 5.42434618e-02 3.79106870e-02
 5.78859183e-02 2.54097764e-02 7.40147155e-03 2.98681431e-03
 1.76294893e-03 5.68223210e-04 8.69779571e-01 3.56911714e-02
 2.61354551e-02 4.12780295e-02 1.73316328e-02 5.09194046e-03
 2.56976434e-03 1.52282331e-03 5.99611680e-04 7.43348142e-01
 5.80286091e-02 4.97388078e-02 7.46472685e-02 3.83537568e-02
 1.81614021e-02 1.17267978e-02 4.57940731e-03 1.41580823e-03
 9.37920200e-01 1.55393289e-02 1.20666222e-02 1.87743206e-02
 9.61712375e-03 3.05412151e-03 1.93789436e-03 8.37170364e-04
 2.53218197e-04 9.13099391e-01 2.42303089e-02 1.70045074e-02
 2.72925208e-02 1.13702921e-02 3.81980697e-03 1.62341796e-03
 1.19050651e-03 3.69248007e-04]

Another example 
 

Python3




# importing required libraries
import mahotas
import numpy as np
from pylab import gray, imshow, show
import os
import matplotlib.pyplot as plt
  
# loading image
img = mahotas.imread('dog_image.png')
 
 
# filtering image
img = img[:, :, 0]
   
print("Image")
   
# showing image
imshow(img)
show()
 
# computing tas
value = mahotas.features.tas(img)
  
 
# printing value
print(value)

Output :
 

Image

 

 

[8.92356868e-01 2.75272814e-02 2.05523535e-02 3.43358813e-02
 1.80176597e-02 5.01153448e-03 1.33785553e-03 6.79775240e-04
 1.80791287e-04 8.81674218e-01 3.13932157e-02 2.34006832e-02
 3.69160363e-02 1.95048908e-02 5.11444295e-03 1.23809709e-03
 6.09325269e-04 1.49090226e-04 9.06137850e-01 2.75823883e-02
 2.03761048e-02 2.88661485e-02 1.36743022e-02 2.68646310e-03
 4.75770564e-04 1.39449993e-04 6.15220557e-05 8.35720148e-01
 4.69532212e-02 3.62894953e-02 5.08719737e-02 2.36920394e-02
 4.84714813e-03 1.21050472e-03 2.87238408e-04 1.28231432e-04
 9.38717680e-01 1.80549908e-02 1.33994005e-02 1.87263793e-02
 8.80054720e-03 1.75569656e-03 3.62486722e-04 1.35538513e-04
 4.72808768e-05 9.05435494e-01 2.48433294e-02 1.91342383e-02
 2.97531477e-02 1.52476648e-02 4.03149662e-03 1.02763639e-03
 4.30377634e-04 9.66153873e-05]

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :