Skip to content
Related Articles
Open in App
Not now

Related Articles

Mahotas – Speeded-Up Robust Features

Improve Article
Save Article
  • Last Updated : 23 Apr, 2021
Improve Article
Save Article

In this article we will see how we can get the speeded up robust features of image in mahotas. In computer vision, speeded up robust features (SURF) is a patented local feature detector and descriptor. It can be used for tasks such as object recognition, image registration, classification, or 3D reconstruction. It is partly inspired by the scale-invariant feature transform (SIFT) descriptor. For this we are going to use the fluorescent microscopy image from a nuclear segmentation benchmark. We can get the image with the help of command given below
 

mahotas.demos.nuclear_image()

Below is the nuclear_image 
 

In order to do this we will use surf.surf method 
 

Syntax : surf.surf(img)
Argument : It takes image object as argument
Return : It returns numpy.ndarray 
 

Example 1 : 
 

Python3




# importing various libraries
import mahotas
import mahotas.demos
import mahotas as mh
import numpy as np
from pylab import imshow, show
from mahotas.features import surf
 
# loading nuclear image
nuclear = mahotas.demos.nuclear_image()
 
# filtering image
nuclear = nuclear[:, :, 0]
 
# adding gaussian filter
nuclear = mahotas.gaussian_filter(nuclear, 4)
 
# showing image
print("Image")
imshow(nuclear)
show()
 
 
# getting Speeded-Up Robust Features
spoints = surf.surf(nuclear)
print("No of  points: {}".format(len(spoints)))

Output : 
 

 

No of  points: 217

Example 2 : 
 

Python3




# importing required libraries
import numpy as np
import mahotas
from pylab import imshow, show
from mahotas.features import surf
  
# loading image
img = mahotas.imread('dog_image.png')
 
    
# filtering the image
img = img[:, :, 0]
     
# setting gaussian filter
gaussian = mahotas.gaussian_filter(img, 5)
  
# showing image
print("Image")
imshow(gaussian)
show()
 
 
# getting Speeded-Up Robust Features
spoints = surf.surf(gaussian)
print("No of  points: {}".format(len(spoints)))

Output : 
 

 

No of  points: 364

 


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!