Skip to content
Related Articles

Related Articles

Mahotas – Loading image as grey
  • Last Updated : 30 Jun, 2020

In this article we will see how we can load the image as grey in mahotas, there are lots of images available in mahotas we use mahotas.demos.load method to load them, in this tutorial we will use “luispedro” image, below is the command to load it.

mahotas.demos.load('luispedro')

Below is the luispedro image

In order to do this we will use mahotas.demos.load method

Syntax : mahotas.demos.load(‘luispedro’, as_grey=True)

Argument : It takes image name as argument



Return : It returns numpy.ndarray i.e image object

Example 1:




# importing required librries
import mahotas
import mahotas.demos
import numpy as np
from pylab import imshow, gray, show
from os import path
  
# loading the image
photo = mahotas.demos.load('luispedro')
  
# showing original image
print("Origial Image")
imshow(photo)
show()
  
# loading image as grey
photo = mahotas.demos.load('luispedro', as_grey = True)
  
# showing image
print("Image loaded as grey")
imshow(photo)
show()

Output :

Example 2:




# importing required librries
import mahotas
import mahotas.demos
import numpy as np
from pylab import imshow, gray, show
from os import path
  
# loading the image
photo = mahotas.demos.load('luispedro')
  
# showing original image
print("Origial Image")
imshow(photo)
show()
  
# loading image as grey
photo = mahotas.demos.load('luispedro', as_grey = True)
  
# converting image type to unit8
# beacuse as_grey returns floating values
photo = photo.astype(np.uint8)
  
# calling gray method
gray()
  
# showing image
print("Image loaded as grey")
imshow(photo)
show()

Output :

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :