In this article we will see how we can obtain the labeled max array of the in mahotas. Labeled images are integer images where the values correspond to different regions. I.e., region 1 is all of the pixels which have value 1, region two is the pixels with value 2, and so on. By convention, region 0 is the background and often handled differently. We can create a labelled region with the help of mahotas.label method.
We can get the size of each region with the help of mahotas.label_size method, this size is measured simply as the number of pixels in each region. We can instead measure the total weight in each area.
In order to do this we will use mahotas.labeled.labeled_max method
Syntax : mahotas.labeled.labeled_max(array, labeled_img)
Argument : It takes two numpy.ndarray object as argument i.e random array of region shape and labeled region
Return : It returns ndarray of numpy.float64 values
Example 1:
Python3
import mahotas
import numpy as np
from pylab import imshow, show
regions = np.zeros(( 10 , 10 ), bool )
regions[: 3 , : 3 ] = 1
regions[ 6 :, 6 :] = 1
labeled, nr_objects = mahotas.label(regions)
imshow(labeled, interpolation = 'nearest' )
show()
array = np.random.random_sample(regions.shape)
l_array = mahotas.labeled.labeled_max(array, labeled)
print ( "Labeled Max array :" )
for i in range ( len (l_array)):
print ( "Region " + str (i) + " : " + str (l_array[i]))
|
Output :

Labeled Max array :
Region 0 : 0.9980513142322492
Region 1 : 0.624390200202312
Region 2 : 0.9210927640926101
Example 2:
Python3
import numpy as np
import mahotas
from pylab import imshow, show
img = mahotas.imread( 'dog_image.png' )
img = img[:, :, 0 ]
gaussian = mahotas.gaussian_filter(img, 15 )
gaussian = (gaussian > gaussian.mean())
labeled, n_nucleus = mahotas.label(gaussian)
print ( "Labelled Image" )
imshow(labeled)
show()
array = np.random.random_sample(labeled.shape)
l_array = mahotas.labeled.labeled_max(array, labeled)
print ( "Labeled Max array :" )
for i in range ( len (l_array)):
print ( "Region " + str (i) + " : " + str (l_array[i]))
|
Output :

Labeled Max array :
Region 0 : 0.9999995478951564
Region 1 : 0.9999944289534851
Region 2 : 0.999718434740755
Region 3 : 0.9996236088210476
Region 4 : 0.9861670123032187