Magnet Puzzle | Backtracking-9

The puzzle game Magnets involves placing a set of domino-shaped magnets (or electrets or other polarized objects) in a subset of slots on a board so as to satisfy a set of constraints. For example, the puzzle on the left has the solution shown on the right:

Each slot contains either a blank entry (indicated by ‘x’s), or a “magnet” with a positive and negative end. The numbers along the left and top sides show the numbers of ‘+’ squares in particular rows or columns. Those along the right and bottom show the number of ‘-’ signs in particular rows or columns. Rows and columns without a number at one or both ends are unconstrained as to the number of ‘+’ or ‘-’ signs, depending on which number is not present. In addition to fulfilling these numerical constraints, a puzzle solution must also satisfy the constraint that no two orthogonally touching squares may have the same sign (diagonally joined squares are not constrained).

You are given top[], bottom[], left[], right[] arrays indicates the count of + or – along the top(+), bottom(-), left(+) and right(-) edges respectively. Values of -1 indicate any number of + and – signs. Also given matrix rules[][] contain any one T, B, L or R characters. For a vertical slot in the board, T indicates its top end and B indicates the bottom end. For a horizontal slot in the board, L indicates left end and R indicates the right end.

Examples:

Input : M = 5, N = 6
        top[] = { 1, -1, -1, 2, 1, -1 }
        bottom[] = { 2, -1, -1, 2, -1, 3 }
        left[] = { 2, 3, -1, -1, -1 }
        right[] = { -1, -1, -1, 1, -1 }
        rules[][] = { { L, R, L, R, T, T },
                      { L, R, L, R, B, B },
                      { T, T, T, T, L, R },
                      { B, B, B, B, T, T },
                      { L, R, L, R, B, B }};
Output : + - + - X - 
         - + - + X + 
         X X + - + - 
         X X - + X + 
         - + X X X - 

Input : M = 4, N = 3
        top[] = { 2, -1, -1 }
        bottom[] = { -1, -1, 2 }
        left[] = { -1, -1, 2, -1 }
        right[] = { 0, -1, -1, -1 }
        rules[][] = { { T, T, T },
                      { B, B, B },
                      { T, L, R },
                      { B, L, R } };
Output : + X +
         – X –
        + – +
        – + –

We can solve this problem using Backtracking.

filter_none

edit
close

play_arrow

link
brightness_4
code

# Write Python3 code here
M = 5
N = 6
top = [ 1, -1, -1, 2, 1, -1 ]
bottom = [ 2, -1, -1, 2, -1, 3 ]
left = [ 2, 3, -1, -1, -1 ]
right = [ -1, -1, -1, 1, -1 ]
  
rules = [["L","R","L","R","T","T" ],
                      [ "L","R","L","R","B","B" ],
                      [ "T","T","T","T","L","R" ],
                      [ "B","B","B","B","T","T" ],
                      [ "L","R","L","R","B","B" ]];
           
  
  
def canPutPatternHorizontally(rules,i,j,pat):
      
    if j-1>=0 and rules[i][j-1] == pat[0]:
        return False
    elif i-1>=0 and rules[i-1][j] == pat[0]:
        return False
    elif i-1>=0 and rules[i-1][j+1] == pat[1]:
        return False
    elif j+2 < len(rules[0]) and rules[i][j+2] == pat[1]:
        return False
      
    return True
      
  
def canPutPatternVertically(rules,i,j,pat):
      
    if j-1>=0 and rules[i][j-1] == pat[0]:
        return False
    elif i-1>=0 and rules[i-1][j] == pat[0]:
        return False
    elif j+1 < len(rules[0]) and rules[i][j+1] == pat[0]:
        return False
      
    return True
      
def doTheStuff(rules,i,j):
      
    if rules[i][j] == "L" or rules[i][j] == "R":
              
        #        option 1 +-
        if canPutPatternHorizontally(rules,i,j,"+-"):
            rules[i][j] = "+"
            rules[i][j+1] = "-"
              
            solveMagnets(rules,i,j)
        #        option 2 -+
  
        #        option 3 xx
              
def checkConstraints(rules):
      
    pCountH = [0 for i in range(len(rules))]
    nCountH = [0 for i in range(len(rules))]
    for row in range(len(rules)):
        for col in range(len(rules[0])):
            ch = rules[row][col]
            if ch == "+":
                pCountH[row] += 1
            elif ch == "-":
                nCountH[row] += 1
      
      
    pCountV = [0 for i in range(len(rules[0]))]
    nCountV = [0 for i in range(len(rules[0]))]
    for col in range(len(rules[0])):
        for row in range(len(rules)):
            ch = rules[row][col]
            if ch == "+":
                pCountV[col] += 1
            elif ch == "-":
                nCountV[col] += 1
                  
      
    for row in range(len(rules)):
        if left[row] != -1:
            if pCountH[row] != left[row]:
                return False
        if right[row] != -1:
            if nCountH[row] != right[row]:
                return False
              
              
      
    for col in range(len(rules[0])):
        if top[col] != -1:
            if pCountV[col] != top[col]:
                return False
        if bottom[col] != -1:
            if nCountV[col] != bottom[col]:
                return False
        #            
        #  if (top[col] != -1 and pCountH[col] != top[col]) or (bottom[col] != -1 and nCountH[col] != bottom[col]) :
        #      return False
      
    return True
      
              
      
       
       
       
       
def solveMagnets(rules,i,j):
      
    if i == len(rules) and j == 0:
  
        # check the constraint before printing
        if checkConstraints(rules):
            print(rules)
    elif j >= len(rules[0]):
           
        solveMagnets(rules,i+1,0)
  
    # normal cases
    else:
           
        if rules[i][j] == "L":
              
            #  option 1 +-
            if canPutPatternHorizontally(rules,i,j,"+-"):
                rules[i][j] = "+"
                rules[i][j+1] = "-"
                  
                solveMagnets(rules,i,j+2)
                  
                rules[i][j] = "L"
                rules[i][j+1] = "R"
              
            # option 2 -+
            if canPutPatternHorizontally(rules,i,j,"-+"):
                rules[i][j] = "-"
                rules[i][j+1] = "+"
                  
                solveMagnets(rules,i,j+2)
                  
                rules[i][j] = "L"
                rules[i][j+1] = "R"
  
            # option 3 xx
            if True or canPutPatternHorizontally(rules,i,j,"xx"):
                rules[i][j] = "x"
                rules[i][j+1] = "x"
                  
                solveMagnets(rules,i,j+2)
                  
                rules[i][j] = "L"
                rules[i][j+1] = "R"
   
        #        vertical check
        elif rules[i][j] == "T":
              
            #        option 1 +-
            if canPutPatternVertically(rules,i,j,"+-"):
                rules[i][j] = "+"
                rules[i+1][j] = "-"
                  
                solveMagnets(rules,i,j+1)
                  
                rules[i][j] = "T"
                rules[i+1][j] = "B"
  
            #        option 2 -+
            if canPutPatternVertically(rules,i,j,"-+"):
                rules[i][j] = "-"
                rules[i+1][j] = "+"
                  
                solveMagnets(rules,i,j+1)
                  
                rules[i][j] = "T"
                rules[i+1][j] = "B"
  
            #        option 3 xx
                  
            if True or canPutPatternVertically(rules,i,j,"xx"):
                rules[i][j] = "x"
                rules[i+1][j] = "x"
                  
                solveMagnets(rules,i,j+1)
                  
                rules[i][j] = "T"
                rules[i+1][j] = "B"
                  
        else:
            solveMagnets(rules,i,j+1)
  
  
# Driver code         
solveMagnets(rules,0,0)

chevron_right


Source :https://people.eecs.berkeley.edu/~hilfingr/programming-contest/f2012-contest.pdf



This article is contributed by Anuj Chauhan (anuj0503). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Improved By : rahul verma 3

Article Tags :
Practice Tags :


3


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.