m Coloring Problem | Backtracking-5

• Difficulty Level : Medium
• Last Updated : 17 Jan, 2022

Given an undirected graph and a number m, determine if the graph can be coloured with at most m colours such that no two adjacent vertices of the graph are colored with the same color. Here coloring of a graph means the assignment of colors to all vertices.

Input-Output format:

Input:

1. A 2D array graph[V][V] where V is the number of vertices in graph and graph[V][V] is an adjacency matrix representation of the graph. A value graph[i][j] is 1 if there is a direct edge from i to j, otherwise graph[i][j] is 0.
2. An integer m is the maximum number of colors that can be used.

Output:
An array color[V] that should have numbers from 1 to m. color[i] should represent the color assigned to the ith vertex. The code should also return false if the graph cannot be colored with m colors.

Example:

Input:
graph = {0, 1, 1, 1},
{1, 0, 1, 0},
{1, 1, 0, 1},
{1, 0, 1, 0}
Output:
Solution Exists:
Following are the assigned colors
1  2  3  2
Explanation: By coloring the vertices
vertices does not have same colors

Input:
graph = {1, 1, 1, 1},
{1, 1, 1, 1},
{1, 1, 1, 1},
{1, 1, 1, 1}
Output: Solution does not exist.
Explanation: No solution exits.

Following is an example of a graph that can be coloured with 3 different colours. We strongly recommend that you click here and practice it, before moving on to the solution.

Method 1: Naive.

Naive Approach: Generate all possible configurations of colors. Since each node can be coloured using any of the m available colours, the total number of colour configurations possible are m^V.
After generating a configuration of colour, check if the adjacent vertices have the same colour or not. If the conditions are met, print the combination and break the loop.

Algorithm:

1. Create a recursive function that takes current index, number of vertices and output color array.
2. If the current index is equal to number of vertices. Check if the output color configuration is safe, i.e check if the adjacent vertices do not have same color. If the conditions are met, print the configuration and break.
3. Assign a color to a vertex (1 to m).
4. For every assigned color recursively call the function with next index and number of vertices
5. If any recursive function returns true break the loop and returns true.

Below is the implementation of the above idea:

C++

 #includeusing namespace std; // Number of vertices in the graph#define V 4 void printSolution(int color[]); // check if the colored// graph is safe or notbool isSafe(bool graph[V][V], int color[]){    // check for every edge    for (int i = 0; i < V; i++)        for (int j = i + 1; j < V; j++)            if (graph[i][j] && color[j] == color[i])                return false;    return true;} /* This function solves the m Coloringproblem using recursion. It returnsfalse if the m colours cannot be assigned,otherwise, return true and printsassignments of colours to all vertices.Please note that there may be more thanone solutions, this function prints oneof the feasible solutions.*/bool graphColoring(bool graph[V][V], int m, int i,                int color[V]){    // if current index reached end    if (i == V) {               // if coloring is safe        if (isSafe(graph, color)) {                       // Print the solution            printSolution(color);            return true;        }        return false;    }     // Assign each color from 1 to m    for (int j = 1; j <= m; j++) {        color[i] = j;         // Recur of the rest vertices        if (graphColoring(graph, m, i + 1, color))            return true;         color[i] = 0;    }     return false;} /* A utility function to print solution */void printSolution(int color[]){    cout << "Solution Exists:" " Following are the assigned colors \n";    for (int i = 0; i < V; i++)        cout << "  " << color[i];    cout << "\n";} // Driver codeint main(){    /* Create following graph and    test whether it is 3 colorable    (3)---(2)    | / |    | / |    | / |    (0)---(1)    */    bool graph[V][V] = {        { 0, 1, 1, 1 },        { 1, 0, 1, 0 },        { 1, 1, 0, 1 },        { 1, 0, 1, 0 },    };    int m = 3; // Number of colors     // Initialize all color values as 0.    // This initialization is needed    // correct functioning of isSafe()    int color[V];    for (int i = 0; i < V; i++)        color[i] = 0;     if (!graphColoring(graph, m, 0, color))        cout << "Solution does not exist";     return 0;} // This code is contributed by shivanisinghss2110

C

 #include #include  // Number of vertices in the graph#define V 4 void printSolution(int color[]); // check if the colored// graph is safe or notbool isSafe(bool graph[V][V], int color[]){    // check for every edge    for (int i = 0; i < V; i++)        for (int j = i + 1; j < V; j++)            if (graph[i][j] && color[j] == color[i])                return false;    return true;} /* This function solves the m Coloring   problem using recursion. It returns  false if the m colours cannot be assigned,  otherwise, return true and prints  assignments of colours to all vertices.  Please note that there may be more than  one solutions, this function prints one  of the feasible solutions.*/bool graphColoring(bool graph[V][V], int m, int i,                   int color[V]){    // if current index reached end    if (i == V) {        // if coloring is safe        if (isSafe(graph, color)) {            // Print the solution            printSolution(color);            return true;        }        return false;    }     // Assign each color from 1 to m    for (int j = 1; j <= m; j++) {        color[i] = j;         // Recur of the rest vertices        if (graphColoring(graph, m, i + 1, color))            return true;         color[i] = 0;    }     return false;} /* A utility function to print solution */void printSolution(int color[]){    printf("Solution Exists:"           " Following are the assigned colors \n");    for (int i = 0; i < V; i++)        printf(" %d ", color[i]);    printf("\n");} // Driver program to test above functionint main(){    /* Create following graph and       test whether it is 3 colorable      (3)---(2)       |   / |       |  /  |       | /   |      (0)---(1)    */    bool graph[V][V] = {        { 0, 1, 1, 1 },        { 1, 0, 1, 0 },        { 1, 1, 0, 1 },        { 1, 0, 1, 0 },    };    int m = 3; // Number of colors     // Initialize all color values as 0.    // This initialization is needed    // correct functioning of isSafe()    int color[V];    for (int i = 0; i < V; i++)        color[i] = 0;     if (!graphColoring(graph, m, 0, color))        printf("Solution does not exist");     return 0;}

Java

 public class GFG{   // Number of vertices in the graph  static int V = 4;   /* A utility function to print solution */  static void printSolution(int[] color)  {    System.out.println("Solution Exists:"  +                       " Following are the assigned colors ");    for (int i = 0; i < V; i++)      System.out.print("  " + color[i]);    System.out.println();  }   // check if the colored  // graph is safe or not  static boolean isSafe(boolean[][] graph, int[] color)  {    // check for every edge    for (int i = 0; i < V; i++)      for (int j = i + 1; j < V; j++)        if (graph[i][j] && color[j] == color[i])          return false;    return true;  }   /* This function solves the m Coloring    problem using recursion. It returns    false if the m colours cannot be assigned,    otherwise, return true and prints    assignments of colours to all vertices.    Please note that there may be more than    one solutions, this function prints one    of the feasible solutions.*/  static boolean graphColoring(boolean[][] graph, int m,                               int i, int[] color)  {    // if current index reached end    if (i == V) {       // if coloring is safe      if (isSafe(graph, color))      {         // Print the solution        printSolution(color);        return true;      }      return false;    }     // Assign each color from 1 to m    for (int j = 1; j <= m; j++)    {      color[i] = j;       // Recur of the rest vertices      if (graphColoring(graph, m, i + 1, color))        return true;      color[i] = 0;    }    return false;  }   // Driver code  public static void main(String[] args)  {         /* Create following graph and        test whether it is 3 colorable        (3)---(2)        | / |        | / |        | / |        (0)---(1)        */    boolean[][] graph = {      { false, true, true, true },      { true, false, true, false },      { true, true, false, true },      { true, false, true, false },    };    int m = 3; // Number of colors     // Initialize all color values as 0.    // This initialization is needed    // correct functioning of isSafe()    int[] color = new int[V];    for (int i = 0; i < V; i++)      color[i] = 0;    if (!graphColoring(graph, m, 0, color))      System.out.println("Solution does not exist");  }} // This code is contributed by divyeh072019.

Python3

 # Number of vertices in the graph# define 4 4 # check if the colored# graph is safe or notdef isSafe(graph, color):       # check for every edge    for i in range(4):        for j in range(i + 1, 4):            if (graph[i][j] and color[j] == color[i]):                return False    return True # /* This function solves the m Coloring# problem using recursion. It returns# false if the m colours cannot be assigned,# otherwise, return true and prints# assignments of colours to all vertices.# Please note that there may be more than# one solutions, this function prints one# of the feasible solutions.*/def graphColoring(graph, m, i, color):       # if current index reached end    if (i == 4):         # if coloring is safe        if (isSafe(graph, color)):             # Print the solution            printSolution(color)            return True        return False     # Assign each color from 1 to m    for j in range(1, m + 1):        color[i] = j         # Recur of the rest vertices        if (graphColoring(graph, m, i + 1, color)):            return True        color[i] = 0    return False # /* A utility function to prsolution */def printSolution(color):    print("Solution Exists:" " Following are the assigned colors ")    for i in range(4):        print(color[i],end=" ") # Driver codeif __name__ == '__main__':       # /* Create following graph and    # test whether it is 3 colorable    # (3)---(2)    # | / |    # | / |    # | / |    # (0)---(1)    # */    graph = [        [ 0, 1, 1, 1 ],        [ 1, 0, 1, 0 ],        [ 1, 1, 0, 1 ],        [ 1, 0, 1, 0 ],    ]    m = 3 # Number of colors     # Initialize all color values as 0.    # This initialization is needed    # correct functioning of isSafe()    color = [0 for i in range(4)]     if (not graphColoring(graph, m, 0, color)):        print ("Solution does not exist") # This code is contributed by mohit kumar 29

C#

 using System;class GFG {         // Number of vertices in the graph    static int V = 4;         /* A utility function to print solution */    static void printSolution(int[] color)    {        Console.WriteLine("Solution Exists:"  +                          " Following are the assigned colors ");        for (int i = 0; i < V; i++)            Console.Write("  " + color[i]);        Console.WriteLine();    }     // check if the colored    // graph is safe or not    static bool isSafe(bool[,] graph, int[] color)    {        // check for every edge        for (int i = 0; i < V; i++)            for (int j = i + 1; j < V; j++)                if (graph[i, j] && color[j] == color[i])                    return false;        return true;    }         /* This function solves the m Coloring    problem using recursion. It returns    false if the m colours cannot be assigned,    otherwise, return true and prints    assignments of colours to all vertices.    Please note that there may be more than    one solutions, this function prints one    of the feasible solutions.*/    static bool graphColoring(bool[,] graph, int m,                              int i, int[] color)    {        // if current index reached end        if (i == V) {                        // if coloring is safe            if (isSafe(graph, color)) {                                // Print the solution                printSolution(color);                return true;            }            return false;        }              // Assign each color from 1 to m        for (int j = 1; j <= m; j++) {            color[i] = j;                  // Recur of the rest vertices            if (graphColoring(graph, m, i + 1, color))                return true;                  color[i] = 0;        }              return false;    }   // Driver code   static void Main() {    /* Create following graph and    test whether it is 3 colorable    (3)---(2)    | / |    | / |    | / |    (0)---(1)    */    bool[,] graph = {        { false, true, true, true },        { true, false, true, false },        { true, true, false, true },        { true, false, true, false },    };    int m = 3; // Number of colors      // Initialize all color values as 0.    // This initialization is needed    // correct functioning of isSafe()    int[] color = new int[V];    for (int i = 0; i < V; i++)        color[i] = 0;      if (!graphColoring(graph, m, 0, color))        Console.WriteLine("Solution does not exist");  }} // this code is contributed by divyeshrabadiya07.

Javascript


Output
Solution Exists: Following are the assigned colors
1  2  3  2

Complexity Analysis:

• Time Complexity: O(m^V).
There is a total O(m^V) combination of colors. So the time complexity is O(m^V).
• Space Complexity: O(V).
Recursive Stack of graphColoring(…) function will require O(V) space.

Method 2: Backtracking.

Approach: The idea is to assign colors one by one to different vertices, starting from the vertex 0. Before assigning a color, check for safety by considering already assigned colors to the adjacent vertices i.e check if the adjacent vertices have the same color or not. If there is any color assignment that does not violate the conditions, mark the color assignment as part of the solution. If no assignment of color is possible then backtrack and return false.

Algorithm:

1. Create a recursive function that takes the graph, current index, number of vertices, and output color array.
2. If the current index is equal to the number of vertices. Print the color configuration in output array.
3. Assign a color to a vertex (1 to m).
4. For every assigned color, check if the configuration is safe, (i.e. check if the adjacent vertices do not have the same color) recursively call the function with next index and number of vertices
5. If any recursive function returns true break the loop and return true.
6. If no recursive function returns true then return false.

Below is the implementation of the above idea:

C++

 // C++ program for solution of M// Coloring problem using backtracking#include using namespace std; // Number of vertices in the graph#define V 4 void printSolution(int color[]); /* A utility function to check if   the current color assignment   is safe for vertex v i.e. checks   whether the edge exists or not   (i.e, graph[v][i]==1). If exist   then checks whether the color to   be filled in the new vertex(c is   sent in the parameter) is already   used by its adjacent   vertices(i-->adj vertices) or   not (i.e, color[i]==c) */bool isSafe(int v, bool graph[V][V],            int color[], int c){    for(int i = 0; i < V; i++)        if (graph[v][i] && c == color[i])            return false;                 return true;} /* A recursive utility functionto solve m coloring problem */bool graphColoringUtil(bool graph[V][V], int m,                       int color[], int v){         /* base case: If all vertices are       assigned a color then return true */    if (v == V)        return true;     /* Consider this vertex v and       try different colors */    for(int c = 1; c <= m; c++)    {                 /* Check if assignment of color           c to v is fine*/        if (isSafe(v, graph, color, c))        {            color[v] = c;             /* recur to assign colors to               rest of the vertices */            if (graphColoringUtil(                graph, m, color, v + 1) == true)                return true;             /* If assigning color c doesn't               lead to a solution then remove it */            color[v] = 0;        }    }     /* If no color can be assigned to       this vertex then return false */    return false;} /* This function solves the m Coloring   problem using Backtracking. It mainly   uses graphColoringUtil() to solve the   problem. It returns false if the m   colors cannot be assigned, otherwise   return true and prints assignments of   colors to all vertices. Please note   that there may be more than one solutions,   this function prints one of the   feasible solutions.*/bool graphColoring(bool graph[V][V], int m){         // Initialize all color values as 0.    // This initialization is needed    // correct functioning of isSafe()    int color[V];    for(int i = 0; i < V; i++)        color[i] = 0;     // Call graphColoringUtil() for vertex 0    if (graphColoringUtil(graph, m, color, 0) == false)    {        cout << "Solution does not exist";        return false;    }     // Print the solution    printSolution(color);    return true;} /* A utility function to print solution */void printSolution(int color[]){    cout << "Solution Exists:"         << " Following are the assigned colors"         << "\n";    for(int i = 0; i < V; i++)        cout << " " << color[i] << " ";             cout << "\n";} // Driver codeint main(){         /* Create following graph and test       whether it is 3 colorable      (3)---(2)       |   / |       |  /  |       | /   |      (0)---(1)    */    bool graph[V][V] = { { 0, 1, 1, 1 },                         { 1, 0, 1, 0 },                         { 1, 1, 0, 1 },                         { 1, 0, 1, 0 }, };                              // Number of colors    int m = 3;    graphColoring(graph, m);    return 0;} // This code is contributed by Shivani

C

 #include #include  // Number of vertices in the graph#define V 4 void printSolution(int color[]); /* A utility function to check if   the current color assignment   is safe for vertex v i.e. checks   whether the edge exists or not   (i.e, graph[v][i]==1). If exist   then checks whether the color to   be filled in the new vertex(c is   sent in the parameter) is already   used by its adjacent   vertices(i-->adj vertices) or   not (i.e, color[i]==c) */bool isSafe(    int v, bool graph[V][V],    int color[], int c){    for (int i = 0; i < V; i++)        if (            graph[v][i] && c == color[i])            return false;    return true;} /* A recursive utility functionto solve m coloring problem */bool graphColoringUtil(    bool graph[V][V], int m,    int color[], int v){    /* base case: If all vertices are       assigned a color then return true */    if (v == V)        return true;     /* Consider this vertex v and       try different colors */    for (int c = 1; c <= m; c++) {        /* Check if assignment of color           c to v is fine*/        if (isSafe(                v, graph, color, c)) {            color[v] = c;             /* recur to assign colors to               rest of the vertices */            if (                graphColoringUtil(                    graph, m, color, v + 1)                == true)                return true;             /* If assigning color c doesn't               lead to a solution then remove it */            color[v] = 0;        }    }     /* If no color can be assigned to       this vertex then return false */    return false;} /* This function solves the m Coloring   problem using Backtracking. It mainly   uses graphColoringUtil() to solve the   problem. It returns false if the m   colors cannot be assigned, otherwise   return true and prints assignments of   colors to all vertices. Please note   that there may be more than one solutions,   this function prints one of the   feasible solutions.*/bool graphColoring(    bool graph[V][V], int m){    // Initialize all color values as 0.    // This initialization is needed    // correct functioning of isSafe()    int color[V];    for (int i = 0; i < V; i++)        color[i] = 0;     // Call graphColoringUtil() for vertex 0    if (        graphColoringUtil(            graph, m, color, 0)        == false) {        printf("Solution does not exist");        return false;    }     // Print the solution    printSolution(color);    return true;} /* A utility function to print solution */void printSolution(int color[]){    printf(        "Solution Exists:"        " Following are the assigned colors \n");    for (int i = 0; i < V; i++)        printf(" %d ", color[i]);    printf("\n");} // driver program to test above functionint main(){    /* Create following graph and test       whether it is 3 colorable      (3)---(2)       |   / |       |  /  |       | /   |      (0)---(1)    */    bool graph[V][V] = {        { 0, 1, 1, 1 },        { 1, 0, 1, 0 },        { 1, 1, 0, 1 },        { 1, 0, 1, 0 },    };    int m = 3; // Number of colors    graphColoring(graph, m);    return 0;}

Java

 /* Java program for solution of   M Coloring problem using backtracking */public class mColoringProblem{    final int V = 4;    int color[];     /* A utility function to check       if the current color assignment       is safe for vertex v */    boolean isSafe(        int v, int graph[][], int color[],        int c)    {        for (int i = 0; i < V; i++)            if (                graph[v][i] == 1 && c == color[i])                return false;        return true;    }     /* A recursive utility function       to solve m coloring  problem */    boolean graphColoringUtil(        int graph[][], int m,        int color[], int v)    {        /* base case: If all vertices are           assigned a color then return true */        if (v == V)            return true;         /* Consider this vertex v and try           different colors */        for (int c = 1; c <= m; c++)        {            /* Check if assignment of color c to v               is fine*/            if (isSafe(v, graph, color, c))            {                color[v] = c;                 /* recur to assign colors to rest                   of the vertices */                if (                    graphColoringUtil(                        graph, m,                        color, v + 1))                    return true;                 /* If assigning color c doesn't lead                   to a solution then remove it */                color[v] = 0;            }        }         /* If no color can be assigned to           this vertex then return false */        return false;    }     /* This function solves the m Coloring problem using       Backtracking. It mainly uses graphColoringUtil()       to solve the problem. It returns false if the m       colors cannot be assigned, otherwise return true       and  prints assignments of colors to all vertices.       Please note that there  may be more than one       solutions, this function prints one of the       feasible solutions.*/    boolean graphColoring(int graph[][], int m)    {        // Initialize all color values as 0. This        // initialization is needed correct        // functioning of isSafe()        color = new int[V];        for (int i = 0; i < V; i++)            color[i] = 0;         // Call graphColoringUtil() for vertex 0        if (            !graphColoringUtil(                graph, m, color, 0))        {            System.out.println(                "Solution does not exist");            return false;        }         // Print the solution        printSolution(color);        return true;    }     /* A utility function to print solution */    void printSolution(int color[])    {        System.out.println(            "Solution Exists: Following"            + " are the assigned colors");        for (int i = 0; i < V; i++)            System.out.print(" " + color[i] + " ");        System.out.println();    }     // driver program to test above function    public static void main(String args[])    {        mColoringProblem Coloring               = new mColoringProblem();        /* Create following graph and           test whether it is           3 colorable          (3)---(2)           |   / |           |  /  |           | /   |          (0)---(1)        */        int graph[][] = {            { 0, 1, 1, 1 },            { 1, 0, 1, 0 },            { 1, 1, 0, 1 },            { 1, 0, 1, 0 },        };        int m = 3; // Number of colors        Coloring.graphColoring(graph, m);    }}// This code is contributed by Abhishek Shankhadhar

Python3

 # Python program for solution of M Coloring# problem using backtracking class Graph():     def __init__(self, vertices):        self.V = vertices        self.graph = [[0 for column in range(vertices)]\                              for row in range(vertices)]     # A utility function to check    # if the current color assignment    # is safe for vertex v    def isSafe(self, v, colour, c):        for i in range(self.V):            if self.graph[v][i] == 1 and colour[i] == c:                return False        return True         # A recursive utility function to solve m    # coloring  problem    def graphColourUtil(self, m, colour, v):        if v == self.V:            return True         for c in range(1, m + 1):            if self.isSafe(v, colour, c) == True:                colour[v] = c                if self.graphColourUtil(m, colour, v + 1) == True:                    return True                colour[v] = 0     def graphColouring(self, m):        colour =  * self.V        if self.graphColourUtil(m, colour, 0) == None:            return False         # Print the solution        print ("Solution exist and Following are the assigned colours:")        for c in colour:            print (c,end=' ')        return True # Driver Codeg = Graph(4)g.graph = [[0, 1, 1, 1], [1, 0, 1, 0], [1, 1, 0, 1], [1, 0, 1, 0]]m = 3g.graphColouring(m) # This code is contributed by Divyanshu Mehta

C#

 /* C# program for solution of M Coloring problemusing backtracking */using System; class GFG {    readonly int V = 4;    int[] color;     /* A utility function to check if the current    color assignment is safe for vertex v */    bool isSafe(int v, int[, ] graph,                int[] color, int c)    {        for (int i = 0; i < V; i++)            if (graph[v, i] == 1 && c == color[i])                return false;        return true;    }     /* A recursive utility function to solve m    coloring problem */    bool graphColoringUtil(int[, ] graph, int m,                           int[] color, int v)    {        /* base case: If all vertices are assigned        a color then return true */        if (v == V)            return true;         /* Consider this vertex v and try different        colors */        for (int c = 1; c <= m; c++) {            /* Check if assignment of color c to v            is fine*/            if (isSafe(v, graph, color, c)) {                color[v] = c;                 /* recur to assign colors to rest                of the vertices */                if (graphColoringUtil(graph, m,                                      color, v + 1))                    return true;                 /* If assigning color c doesn't lead                to a solution then remove it */                color[v] = 0;            }        }         /* If no color can be assigned to this vertex        then return false */        return false;    }     /* This function solves the m Coloring problem using    Backtracking. It mainly uses graphColoringUtil()    to solve the problem. It returns false if the m    colors cannot be assigned, otherwise return true    and prints assignments of colors to all vertices.    Please note that there may be more than one    solutions, this function prints one of the    feasible solutions.*/    bool graphColoring(int[, ] graph, int m)    {        // Initialize all color values as 0. This        // initialization is needed correct functioning        // of isSafe()        color = new int[V];        for (int i = 0; i < V; i++)            color[i] = 0;         // Call graphColoringUtil() for vertex 0        if (!graphColoringUtil(graph, m, color, 0)) {            Console.WriteLine("Solution does not exist");            return false;        }         // Print the solution        printSolution(color);        return true;    }     /* A utility function to print solution */    void printSolution(int[] color)    {        Console.WriteLine("Solution Exists: Following"                          + " are the assigned colors");        for (int i = 0; i < V; i++)            Console.Write(" " + color[i] + " ");        Console.WriteLine();    }     // Driver Code    public static void Main(String[] args)    {        GFG Coloring = new GFG();         /* Create following graph and test whether it is        3 colorable        (3)---(2)        | / |        | / |        | / |        (0)---(1)        */        int[, ] graph = { { 0, 1, 1, 1 },                          { 1, 0, 1, 0 },                          { 1, 1, 0, 1 },                          { 1, 0, 1, 0 } };        int m = 3; // Number of colors        Coloring.graphColoring(graph, m);    }} // This code is contributed by PrinciRaj1992

Javascript


Output
Solution Exists: Following are the assigned colors
1  2  3  2

Complexity Analysis:

• Time Complexity: O(m^V).
There are total O(m^V) combination of colors. So time complexity is O(m^V). The upperbound time complexity remains the same but the average time taken will be less.
• Space Complexity: O(V).
Recursive Stack of graphColoring(…) function will require O(V) space.

Method 3:  Using BFS

The approach here is to color each node from 1 to n initially by color 1. And start travelling BFS from an unvisited starting node to cover all connected components in one go. On reaching each node during BFS traversal, do the following:

• Check all edges of the given node.
• For each vertex connected to our node via an edge:
• check if the color of the nodes is the same. If same, increase the color of the other node (not the current) by one.
• check if it visited or unvisited. If not visited, mark it as visited and push it in a queue.
• Check condition for maxColors till now. If it exceeds M, return false

After visiting all nodes, return true (As no violating condition could be found while travelling).

C++

 // CPP program for the above approach#include #include using namespace std; class node{     // A node class which stores the color and the edges    // connected to the nodepublic:    int color = 1;    set edges;}; int canPaint(vector& nodes, int n, int m){     // Create a visited array of n    // nodes, initialized to zero    vector visited(n + 1, 0);     // maxColors used till now are 1 as    // all nodes are painted color 1    int maxColors = 1;     // Do a full BFS traversal from    // all unvisited starting points    for (int sv = 1; sv <= n; sv++)    {         if (visited[sv])            continue;         // If the starting point is unvisited,        // mark it visited and push it in queue        visited[sv] = 1;        queue q;        q.push(sv);         // BFS Travel starts here        while (!q.empty())        {             int top = q.front();            q.pop();             // Checking all adjacent nodes            // to "top" edge in our queue            for (auto it = nodes[top].edges.begin();                 it != nodes[top].edges.end(); it++)            {                 // IMPORTANT: If the color of the                // adjacent node is same, increase it by 1                if (nodes[top].color == nodes[*it].color)                    nodes[*it].color += 1;                 // If number of colors used shoots m, return                // 0                maxColors                    = max(maxColors, max(nodes[top].color,                                         nodes[*it].color));                if (maxColors > m)                    return 0;                 // If the adjacent node is not visited,                // mark it visited and push it in queue                if (!visited[*it]) {                    visited[*it] = 1;                    q.push(*it);                }            }        }    }     return 1;} // Driver codeint main(){          int n = 4;     bool graph[n][n] = {     { 0, 1, 1, 1 },     { 1, 0, 1, 0 },     { 1, 1, 0, 1 },     { 1, 0, 1, 0 }};     int m = 3; // Number of colors                // Create a vector of n+1      // nodes of type "node"      // The zeroth position is just      // dummy (1 to n to be used)      vector nodes(n + 1);       // Add edges to each node as per given input      for (int i = 0; i < n; i++)      {         for(int j =0;j

Python3

 # Python3 program for the above approachfrom queue import Queue class node:         color = 1    edges = set() def canPaint(nodes, n, m):     # Create a visited array of n    # nodes, initialized to zero    visited = [0 for _ in range(n+1)]     # maxColors used till now are 1 as    # all nodes are painted color 1    maxColors = 1     # Do a full BFS traversal from    # all unvisited starting points    for _ in range(1, n + 1):        if visited[_]:            continue         # If the starting point is unvisited,        # mark it visited and push it in queue        visited[_] = 1        q = Queue()        q.put(_)         # BFS Travel starts here        while not q.empty():            top = q.get()             # Checking all adjacent nodes            # to "top" edge in our queue            for _ in nodes[top].edges:                 # IMPORTANT: If the color of the                # adjacent node is same, increase it by 1                 if nodes[top].color == nodes[_].color:                    nodes[_].color += 1                 # If number of colors used shoots m,                # return 0                maxColors = max(maxColors, max(                    nodes[top].color, nodes[_].color))                                     if maxColors > m:                    print(maxColors)                    return 0                 # If the adjacent node is not visited,                # mark it visited and push it in queue                if not visited[_]:                    visited[_] = 1                    q.put(_)                         return 1 # Driver codeif __name__ == "__main__":         n = 4    graph = [ [ 0, 1, 1, 1 ],              [ 1, 0, 1, 0 ],              [ 1, 1, 0, 1 ],              [ 1, 0, 1, 0 ] ]                   # Number of colors    m = 3      # Create a vector of n+1    # nodes of type "node"    # The zeroth position is just    # dummy (1 to n to be used)    nodes = []    for _ in range(n+1):        nodes.append(node())     # Add edges to each node as    # per given input    for _ in range(n):        for __ in range(n):            if graph[_][__]:                                 # Connect the undirected graph                nodes[_].edges.add(_)                nodes[__].edges.add(__)     # Display final answer    print(canPaint(nodes, n, m)) # This code is contributed by harshitkap00r

C#

 // C# program for the above approachusing System;using System.Collections;using System.Collections.Generic;class GFG{ class node{       // A node class which stores the color and the edges    // connected to the node    public int color = 1;    public HashSet edges = new HashSet();}; static int canPaint(List nodes, int n, int m){     // Create a visited array of n    // nodes, initialized to zero    List visited = new List();     for(int i = 0; i < n + 1; i++)    {        visited.Add(0);    }     // maxColors used till now are 1 as    // all nodes are painted color 1    int maxColors = 1;     // Do a full BFS traversal from    // all unvisited starting points    for (int sv = 1; sv <= n; sv++)    {         if (visited[sv] > 0)            continue;         // If the starting point is unvisited,        // mark it visited and push it in queue        visited[sv] = 1;        Queue q = new Queue();        q.Enqueue(sv);         // BFS Travel starts here        while (q.Count != 0)        {             int top = (int)q.Peek();            q.Dequeue();             // Checking all adjacent nodes            // to "top" edge in our queue            foreach(int it in nodes[top].edges)            {                               // IMPORTANT: If the color of the                // adjacent node is same, increase it by 1                if (nodes[top].color == nodes[it].color)                    nodes[it].color += 1;                 // If number of colors used shoots m, return                // 0                maxColors                    = Math.Max(maxColors, Math.Max(nodes[top].color,                                         nodes[it].color));                if (maxColors > m)                    return 0;                 // If the adjacent node is not visited,                // mark it visited and push it in queue                if (visited[it] == 0)                {                    visited[it] = 1;                    q.Enqueue(it);                }            }        }    }    return 1;} // Driver codepublic static void Main(){          int n = 4;     int [,]graph = {     { 0, 1, 1, 1 },     { 1, 0, 1, 0 },     { 1, 1, 0, 1 },     { 1, 0, 1, 0 }};     int m = 3; // Number of colors           // Create a vector of n+1      // nodes of type "node"      // The zeroth position is just      // dummy (1 to n to be used)      List nodes = new List();      for(int i = 0; i < n+ 1; i++)      {        nodes.Add(new node());      }        // Add edges to each node as per given input      for (int i = 0; i < n; i++)      {         for(int j = 0; j < n; j++)         {             if(graph[i, j] > 0)             {                                  // Connect the undirected graph                  nodes[i].edges.Add(i);                  nodes[j].edges.Add(j);              }         }      }         // Display final answer        Console.WriteLine(canPaint(nodes, n, m));   }}  // This code is contributed by rutvik_56.

Javascript


Output
1

Complexity Analysis:

• Time Complexity: O(V + E).
• Space Complexity: O(V). For Storing Visited List.

References:
http://en.wikipedia.org/wiki/Graph_coloring