Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

LRU Cache Implementation

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

How to implement LRU caching scheme? What data structures should be used? 

We are given the total possible page numbers that can be referred to. We are also given a cache (or memory) size (The number of page frames that the cache can hold at a time). The LRU caching scheme is to remove the least recently used frame when the cache is full and a new page is referenced which is not there in the cache. Please see the Galvin book for more details (see the LRU page replacement slide here)

LRU cache implementation using queue and hashing:

To solve the problem follow the below idea:

We use two data structures to implement an LRU Cache.  

  1. Queue is implemented using a doubly-linked list. The maximum size of the queue will be equal to the total number of frames available (cache size). The most recently used pages will be near the front end and the least recently used pages will be near the rear end.
  2. A Hash with the page number as key and the address of the corresponding queue node as value.

When a page is referenced, the required page may be in the memory. If it is in the memory, we need to detach the node of the list and bring it to the front of the queue. 
If the required page is not in memory, we bring that in memory. In simple words, we add a new node to the front of the queue and update the corresponding node address in the hash. If the queue is full, i.e. all the frames are full, we remove a node from the rear of the queue, and add the new node to the front of the queue.

Example – Consider the following reference string:  1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Find the number of page faults using the least recently used (LRU) page replacement algorithm with 3-page frames. 

Below is the illustration of the above approach:
 

 

Note: Initially no page is in the memory.

 

Follow the below steps to solve the problem:

  • Create a class LRUCache with declare a list of type int, an unordered map of type <int, list<int>>, and a variable to store the maximum size of the cache
  • In the refer function of LRUCache
    • If this value is not present in the queue then push this value in front of the queue and remove the last value if the queue is full
    • If the value is already present then remove it from the queue and push it in the front of the queue
  • In the display function print, the LRUCache using the queue starting from the front

Below is the implementation of the above approach:

C++




// We can use stl container list as a double
// ended queue to store the cache keys, with
// the descending time of reference from front
// to back and a set container to check presence
// of a key. But to fetch the address of the key
// in the list using find(), it takes O(N) time.
// This can be optimized by storing a reference
//     (iterator) to each key in a hash map.
#include <bits/stdc++.h>
using namespace std;
 
class LRUCache {
    // store keys of cache
    list<int> dq;
 
    // store references of key in cache
    unordered_map<int, list<int>::iterator> ma;
    int csize; // maximum capacity of cache
 
public:
    LRUCache(int);
    void refer(int);
    void display();
};
 
// Declare the size
LRUCache::LRUCache(int n) { csize = n; }
 
// Refers key x with in the LRU cache
void LRUCache::refer(int x)
{
    // not present in cache
    if (ma.find(x) == ma.end()) {
        // cache is full
        if (dq.size() == csize) {
            // delete least recently used element
            int last = dq.back();
 
            // Pops the last element
            dq.pop_back();
 
            // Erase the last
            ma.erase(last);
        }
    }
 
    // present in cache
    else
        dq.erase(ma[x]);
 
    // update reference
    dq.push_front(x);
    ma[x] = dq.begin();
}
 
// Function to display contents of cache
void LRUCache::display()
{
 
    // Iterate in the deque and print
    // all the elements in it
    for (auto it = dq.begin(); it != dq.end(); it++)
        cout << (*it) << " ";
 
    cout << endl;
}
 
// Driver Code
int main()
{
    LRUCache ca(4);
 
    ca.refer(1);
    ca.refer(2);
    ca.refer(3);
    ca.refer(1);
    ca.refer(4);
    ca.refer(5);
    ca.display();
 
    return 0;
}
// This code is contributed by Satish Srinivas

C




// A C program to show implementation of LRU cache
#include <stdio.h>
#include <stdlib.h>
 
// A Queue Node (Queue is implemented using Doubly Linked
// List)
typedef struct QNode {
    struct QNode *prev, *next;
    unsigned
        pageNumber; // the page number stored in this QNode
} QNode;
 
// A Queue (A FIFO collection of Queue Nodes)
typedef struct Queue {
    unsigned count; // Number of filled frames
    unsigned numberOfFrames; // total number of frames
    QNode *front, *rear;
} Queue;
 
// A hash (Collection of pointers to Queue Nodes)
typedef struct Hash {
    int capacity; // how many pages can be there
    QNode** array; // an array of queue nodes
} Hash;
 
// A utility function to create a new Queue Node. The queue
// Node will store the given 'pageNumber'
QNode* newQNode(unsigned pageNumber)
{
    // Allocate memory and assign 'pageNumber'
    QNode* temp = (QNode*)malloc(sizeof(QNode));
    temp->pageNumber = pageNumber;
 
    // Initialize prev and next as NULL
    temp->prev = temp->next = NULL;
 
    return temp;
}
 
// A utility function to create an empty Queue.
// The queue can have at most 'numberOfFrames' nodes
Queue* createQueue(int numberOfFrames)
{
    Queue* queue = (Queue*)malloc(sizeof(Queue));
 
    // The queue is empty
    queue->count = 0;
    queue->front = queue->rear = NULL;
 
    // Number of frames that can be stored in memory
    queue->numberOfFrames = numberOfFrames;
 
    return queue;
}
 
// A utility function to create an empty Hash of given
// capacity
Hash* createHash(int capacity)
{
    // Allocate memory for hash
    Hash* hash = (Hash*)malloc(sizeof(Hash));
    hash->capacity = capacity;
 
    // Create an array of pointers for referring queue nodes
    hash->array
        = (QNode**)malloc(hash->capacity * sizeof(QNode*));
 
    // Initialize all hash entries as empty
    int i;
    for (i = 0; i < hash->capacity; ++i)
        hash->array[i] = NULL;
 
    return hash;
}
 
// A function to check if there is slot available in memory
int AreAllFramesFull(Queue* queue)
{
    return queue->count == queue->numberOfFrames;
}
 
// A utility function to check if queue is empty
int isQueueEmpty(Queue* queue)
{
    return queue->rear == NULL;
}
 
// A utility function to delete a frame from queue
void deQueue(Queue* queue)
{
    if (isQueueEmpty(queue))
        return;
 
    // If this is the only node in list, then change front
    if (queue->front == queue->rear)
        queue->front = NULL;
 
    // Change rear and remove the previous rear
    QNode* temp = queue->rear;
    queue->rear = queue->rear->prev;
 
    if (queue->rear)
        queue->rear->next = NULL;
 
    free(temp);
 
    // decrement the number of full frames by 1
    queue->count--;
}
 
// A function to add a page with given 'pageNumber' to both
// queue and hash
void Enqueue(Queue* queue, Hash* hash, unsigned pageNumber)
{
    // If all frames are full, remove the page at the rear
    if (AreAllFramesFull(queue)) {
        // remove page from hash
        hash->array[queue->rear->pageNumber] = NULL;
        deQueue(queue);
    }
 
    // Create a new node with given page number,
    // And add the new node to the front of queue
    QNode* temp = newQNode(pageNumber);
    temp->next = queue->front;
 
    // If queue is empty, change both front and rear
    // pointers
    if (isQueueEmpty(queue))
        queue->rear = queue->front = temp;
    else // Else change the front
    {
        queue->front->prev = temp;
        queue->front = temp;
    }
 
    // Add page entry to hash also
    hash->array[pageNumber] = temp;
 
    // increment number of full frames
    queue->count++;
}
 
// This function is called when a page with given
// 'pageNumber' is referenced from cache (or memory). There
// are two cases:
// 1. Frame is not there in memory, we bring it in memory
// and add to the front of queue
// 2. Frame is there in memory, we move the frame to front
// of queue
void ReferencePage(Queue* queue, Hash* hash,
                   unsigned pageNumber)
{
    QNode* reqPage = hash->array[pageNumber];
 
    // the page is not in cache, bring it
    if (reqPage == NULL)
        Enqueue(queue, hash, pageNumber);
 
    // page is there and not at front, change pointer
    else if (reqPage != queue->front) {
        // Unlink rquested page from its current location
        // in queue.
        reqPage->prev->next = reqPage->next;
        if (reqPage->next)
            reqPage->next->prev = reqPage->prev;
 
        // If the requested page is rear, then change rear
        // as this node will be moved to front
        if (reqPage == queue->rear) {
            queue->rear = reqPage->prev;
            queue->rear->next = NULL;
        }
 
        // Put the requested page before current front
        reqPage->next = queue->front;
        reqPage->prev = NULL;
 
        // Change prev of current front
        reqPage->next->prev = reqPage;
 
        // Change front to the requested page
        queue->front = reqPage;
    }
}
 
// Driver code
int main()
{
    // Let cache can hold 4 pages
    Queue* q = createQueue(4);
 
    // Let 10 different pages can be requested (pages to be
    // referenced are numbered from 0 to 9
    Hash* hash = createHash(10);
 
    // Let us refer pages 1, 2, 3, 1, 4, 5
    ReferencePage(q, hash, 1);
    ReferencePage(q, hash, 2);
    ReferencePage(q, hash, 3);
    ReferencePage(q, hash, 1);
    ReferencePage(q, hash, 4);
    ReferencePage(q, hash, 5);
 
    // Let us print cache frames after the above referenced
    // pages
    printf("%d ", q->front->pageNumber);
    printf("%d ", q->front->next->pageNumber);
    printf("%d ", q->front->next->next->pageNumber);
    printf("%d ", q->front->next->next->next->pageNumber);
 
    return 0;
}

Java




/* We can use Java inbuilt Deque as a double
   ended queue to store the cache keys, with
   the descending time of reference from front
   to back and a set container to check presence
   of a key. But remove a key from the Deque using
   remove(), it takes O(N) time. This can be
   optimized by storing a reference (iterator) to
   each key in a hash map. */
import java.util.Deque;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedList;
 
public class LRUCache {
 
    // store keys of cache
    private Deque<Integer> doublyQueue;
 
    // store references of key in cache
    private HashSet<Integer> hashSet;
 
    // maximum capacity of cache
    private final int CACHE_SIZE;
 
    LRUCache(int capacity)
    {
        doublyQueue = new LinkedList<>();
        hashSet = new HashSet<>();
        CACHE_SIZE = capacity;
    }
 
    /* Refer the page within the LRU cache */
    public void refer(int page)
    {
        if (!hashSet.contains(page)) {
            if (doublyQueue.size() == CACHE_SIZE) {
                int last = doublyQueue.removeLast();
                hashSet.remove(last);
            }
        }
        else { /* The found page may not be always the last
                element, even if it's an intermediate
                element that needs to be removed and added
                to the start of the Queue */
            doublyQueue.remove(page);
        }
        doublyQueue.push(page);
        hashSet.add(page);
    }
 
    // display contents of cache
    public void display()
    {
        Iterator<Integer> itr = doublyQueue.iterator();
        while (itr.hasNext()) {
            System.out.print(itr.next() + " ");
        }
    }
 
      // Driver code
    public static void main(String[] args)
    {
        LRUCache cache = new LRUCache(4);
        cache.refer(1);
        cache.refer(2);
        cache.refer(3);
        cache.refer(1);
        cache.refer(4);
        cache.refer(5);
        cache.display();
    }
}
// This code is contributed by Niraj Kumar

Python3




# We can use stl container list as a double
# ended queue to store the cache keys, with
# the descending time of reference from front
# to back and a set container to check presence
# of a key. But to fetch the address of the key
# in the list using find(), it takes O(N) time.
# This can be optimized by storing a reference
# (iterator) to each key in a hash map.
class LRUCache:
    # store keys of cache
    def __init__(self, n):
        self.csize = n
        self.dq = []
        self.ma = {}
 
 
    # Refers key x with in the LRU cache
    def refer(self, x):
         
        #  not present in cache
        if x not in self.ma.keys():
            # cache is full
            if len(self.dq) == self.csize:
                # delete least recently used element
                last = self.dq[-1]
 
                # Pops the last element
                ele = self.dq.pop();
 
                # Erase the last
                del self.ma[last]
 
        # present in cache
        else:
            del self.dq[self.ma[x]]
 
        # update reference
        self.dq.insert(0, x)
        self.ma[x] = 0;
 
    # Function to display contents of cache
    def display(self):
 
        # Iterate in the deque and print
        # all the elements in it
        print(self.dq)
 
# Driver Code
ca = LRUCache(4)
 
ca.refer(1)
ca.refer(2)
ca.refer(3)
ca.refer(1)
ca.refer(4)
ca.refer(5)
ca.display()
# This code is contributed by Satish Srinivas

C#




// C# program to implement the approach
 
using System;
using System.Collections.Generic;
 
class LRUCache {
    // store keys of cache
    private List<int> doublyQueue;
 
    // store references of key in cache
    private HashSet<int> hashSet;
 
    // maximum capacity of cache
    private int CACHE_SIZE;
 
    public LRUCache(int capacity)
    {
        doublyQueue = new List<int>();
        hashSet = new HashSet<int>();
        CACHE_SIZE = capacity;
    }
 
    /* Refer the page within the LRU cache */
    public void Refer(int page)
    {
        if (!hashSet.Contains(page)) {
            if (doublyQueue.Count == CACHE_SIZE) {
                int last
                    = doublyQueue[doublyQueue.Count - 1];
                doublyQueue.RemoveAt(doublyQueue.Count - 1);
                hashSet.Remove(last);
            }
        }
        else {
            /* The found page may not be always the last
               element, even if it's an intermediate
               element that needs to be removed and added
               to the start of the Queue */
            doublyQueue.Remove(page);
        }
        doublyQueue.Insert(0, page);
        hashSet.Add(page);
    }
 
    // display contents of cache
    public void Display()
    {
        foreach(int page in doublyQueue)
        {
            Console.Write(page + " ");
        }
    }
 
    // Driver code
    static void Main(string[] args)
    {
        LRUCache cache = new LRUCache(4);
        cache.Refer(1);
        cache.Refer(2);
        cache.Refer(3);
        cache.Refer(1);
        cache.Refer(4);
        cache.Refer(5);
        cache.Display();
    }
}
 
// This code is contributed by phasing17

Javascript




// JS code to implement the approach
class LRUCache {
  constructor(n) {
    this.csize = n;
    this.dq = [];
    this.ma = new Map();
  }
 
  refer(x) {
    if (!this.ma.has(x)) {
      if (this.dq.length === this.csize) {
        const last = this.dq[this.dq.length - 1];
        this.dq.pop();
        this.ma.delete(last);
      }
    } else {
      this.dq.splice(this.dq.indexOf(x), 1);
    }
 
    this.dq.unshift(x);
    this.ma.set(x, 0);
  }
 
  display() {
    console.log(this.dq);
  }
}
 
const cache = new LRUCache(4);
 
cache.refer(1);
cache.refer(2);
cache.refer(3);
cache.refer(1);
cache.refer(4);
cache.refer(5);
cache.display();
 
// This code is contributed by phasing17

Output

5 4 1 3 

Time Complexity: The time complexity of the refer() function is O(1) as it does a constant amount of work.
Auxiliary Space: The space complexity of the LRU cache is O(n), where n is the maximum size of the cache.

Java Implementation using LinkedHashMap. 

Approach: The idea is to use a LinkedHashSet that maintains the insertion order of elements. This way implementation becomes short and easy.

Below is the implementation of the above approach:

C++




#include <iostream>
#include <list>
#include <unordered_map>
using namespace std;
 
class LRUCache {
 
private:
    int capacity;
    list<int> cache;
    unordered_map<int, list<int>::iterator> map;
 
public:
    LRUCache(int capacity) : capacity(capacity) { }
 
      // This function returns false if key is not
    // present in cache. Else it moves the key to
    // front by first removing it and then adding
    // it, and returns true.
    bool get(int key) {
        auto it = map.find(key);
        if (it == map.end()) {
            return false;
        }
        cache.splice(cache.end(), cache, it->second);
        return true;
    }
 
    void refer(int key) {
        if (get(key)) {
            return;
        }
        put(key);
    }
 
    // displays contents of cache in Reverse Order
    void display() {
        for (auto it = cache.rbegin(); it != cache.rend(); ++it) {
           
         // The descendingIterator() method of
        // java.util.LinkedList class is used to return an
        // iterator over the elements in this LinkedList in
        // reverse sequential order
            cout << *it << " ";
        }
    }
 
    void put(int key) {
        if (cache.size() == capacity) {
            int first_key = cache.front();
            cache.pop_front();
            map.erase(first_key);
        }
        cache.push_back(key);
        map[key] = --cache.end();
    }
};
 
int main() {
    LRUCache cache(4);
    cache.refer(1);
    cache.refer(2);
    cache.refer(3);
    cache.refer(1);
    cache.refer(4);
    cache.refer(5);
    cache.display();
    return 0;
}
 
// This code is contributed by divyansh2212

Java




// Java program to implement LRU cache
// using LinkedHashSet
import java.util.*;
 
class LRUCache {
 
    Set<Integer> cache;
    int capacity;
 
    public LRUCache(int capacity)
    {
        this.cache = new LinkedHashSet<Integer>(capacity);
        this.capacity = capacity;
    }
 
    // This function returns false if key is not
    // present in cache. Else it moves the key to
    // front by first removing it and then adding
    // it, and returns true.
    public boolean get(int key)
    {
        if (!cache.contains(key))
            return false;
        cache.remove(key);
        cache.add(key);
        return true;
    }
 
    /* Refers key x with in the LRU cache */
    public void refer(int key)
    {
        if (get(key) == false)
            put(key);
    }
 
    // displays contents of cache in Reverse Order
    public void display()
    {
        LinkedList<Integer> list = new LinkedList<>(cache);
 
        // The descendingIterator() method of
        // java.util.LinkedList class is used to return an
        // iterator over the elements in this LinkedList in
        // reverse sequential order
        Iterator<Integer> itr = list.descendingIterator();
 
        while (itr.hasNext())
            System.out.print(itr.next() + " ");
    }
 
    public void put(int key)
    {
 
        if (cache.size() == capacity) {
            int firstKey = cache.iterator().next();
            cache.remove(firstKey);
        }
 
        cache.add(key);
    }
 
      // Driver code
    public static void main(String[] args)
    {
        LRUCache ca = new LRUCache(4);
        ca.refer(1);
        ca.refer(2);
        ca.refer(3);
        ca.refer(1);
        ca.refer(4);
        ca.refer(5);
        ca.display();
    }
}

Python3




from typing import List, Dict
 
 
class LRUCache:
    def __init__(self, capacity: int):
        self.capacity = capacity
        self.cache = []
        self.map = {}
 
    # This function returns false if key is not
    # present in cache. Else it moves the key to
    # front by first removing it and then adding
    # it, and returns true.
    def get(self, key: int) -> bool:
        if key not in self.map:
            return False
        self.cache.remove(key)
        self.cache.append(key)
        return True
 
    def refer(self, key: int) -> None:
        if self.get(key):
            return
        self.put(key)
 
    # displays contents of cache in Reverse Order
    def display(self) -> None:
        for i in range(len(self.cache)-1, -1, -1):
            print(self.cache[i], end=" ")
 
    def put(self, key: int) -> None:
        if len(self.cache) == self.capacity:
            first_key = self.cache.pop(0)
            del self.map[first_key]
        self.cache.append(key)
        self.map[key] = len(self.cache) - 1
 
 
if __name__ == '__main__':
    cache = LRUCache(4)
    cache.refer(1)
    cache.refer(2)
    cache.refer(3)
    cache.refer(1)
    cache.refer(4)
    cache.refer(5)
    cache.display()

Javascript




// JavaScript program to implement LRU cache
// using Set and LinkedList
class LRUCache {
constructor(capacity) {
this.cache = new Set();
this.capacity = capacity;
}
 
// This function returns false if key is not
// present in cache. Else it moves the key to
// front by first removing it and then adding
// it, and returns true.
get(key) {
if (!this.cache.has(key)) {
return false;
}
this.cache.delete(key);
this.cache.add(key);
return true;
}
 
/* Refers key x with in the LRU cache */
refer(key) {
if (!this.get(key)) {
this.put(key);
}
}
 
// displays contents of cache in Reverse Order
display() {
const list = [...this.cache];// The reverse() method of
 
// Array class is used to reverse the elements in the array
list.reverse();
let ans="";
for (const key of list) {
  ans = ans +key + " ";
}
  console.log(ans);
}
 
put(key) {
if (this.cache.size === this.capacity) {
const firstKey = this.cache.values().next().value;
this.cache.delete(firstKey);
}
this.cache.add(key);
}
}
 
// Driver code
const ca = new LRUCache(4);
ca.refer(1);
ca.refer(2);
ca.refer(3);
ca.refer(1);
ca.refer(4);
ca.refer(5);
ca.display();

C#




using System;
using System.Collections.Generic;
 
public class LRUCache
{
    private int capacity;
    private List<int> cache;
    private Dictionary<int, int> map;
 
    public LRUCache(int capacity)
    {
        this.capacity = capacity;
        this.cache = new List<int>();
        this.map = new Dictionary<int, int>();
    }
 
    // This function returns false if key is not
    // present in cache. Else it moves the key to
    // front by first removing it and then adding
    // it, and returns true.
    public bool Get(int key)
    {
        if (!this.map.ContainsKey(key))
        {
            return false;
        }
 
        this.cache.Remove(key);
        this.cache.Add(key);
        return true;
    }
 
    public void Refer(int key)
    {
        if (this.Get(key))
        {
            return;
        }
 
        this.Put(key);
    }
 
    // Displays contents of cache in Reverse Order
    public void Display()
    {
        for (int i = this.cache.Count - 1; i >= 0; i--)
        {
            Console.Write(this.cache[i] + " ");
        }
    }
 
    public void Put(int key)
    {
        if (this.cache.Count == this.capacity)
        {
            int firstKey = this.cache[0];
            this.cache.RemoveAt(0);
            this.map.Remove(firstKey);
        }
 
        this.cache.Add(key);
        this.map[key] = this.cache.Count - 1;
    }
}
 
class Program
{
    static void Main(string[] args)
    {
        LRUCache cache = new LRUCache(4);
        cache.Refer(1);
        cache.Refer(2);
        cache.Refer(3);
        cache.Refer(1);
        cache.Refer(4);
        cache.Refer(5);
        cache.Display();
    }
}
 
//THIS CODE IS CONTRIBUTED BY NARASINGANIKHIL

Output

5 4 1 3 

Time Complexity: O(1), we use a Linked HashSet data structure to implement the cache. The Linked HashSet provides constant time complexity for both adding elements and retrieving elements.
Auxiliary Space: O(n), we need to store n elements in the cache, so the space complexity is O(n).

Related Article:
Python implementation using OrderedDict
 

This article is compiled by Aashish Barnwal and reviewed by the GeeksforGeeks team. Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above.
 


My Personal Notes arrow_drop_up
Like Article
Save Article
Similar Reads
Related Tutorials