Related Articles

Related Articles

Loss when two items are sold at same price and same percentage profit/loss
  • Last Updated : 04 Oct, 2019

Given the Selling price i.e ‘SP’ of the two items each. One item is sold at ‘P%’ Profit and other at ‘P%’ Loss. The task is to find out the overall Loss.

Examples:

Input: SP = 2400, P = 30%  
Output: Loss = 474.725

Input: SP = 5000, P = 10%
Output: Loss = 101.01

Approach:



How does the above formula work?

For profit making item :
With selling price (100 + P), we get P profit.
With selling price SP, we get SP * (P/(100 + P)) profit

For loss making item :
With selling price (100 – P), we get P loss.
With selling price SP, we get SP * (P/(100 – P)) loss



Net Loss = Total Loss – Total Profit
= SP * (P/(100 – P)) – SP * (P/(100 + P))
= (SP * P * P * 2) / (100*100 – P*P)

Note: The above formula is applicable only when the Cost price of both the items are different. If CP of both the items are same then, in that case, there is ‘No profit No loss’.

Below is the implementation of the above approach

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of above approach.
#include <bits/stdc++.h>
using namespace std;
  
// Function that will
// find loss
void Loss(int SP, int P)
{
  
    float loss = 0;
  
    loss = (2 * P * P * SP) / float(100 * 100 - P * P);
  
    cout << "Loss = " << loss;
}
  
// Driver Code
int main()
{
    int SP = 2400, P = 30;
  
    // Calling Function
    Loss(SP, P);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of above approach.
class GFG 
{
  
// Function that will
// find loss
static void Loss(int SP, int P)
{
  
    float loss = 0;
  
    loss = (float)(2 * P * P * SP) / (100 * 100 - P * P);
  
    System.out.println("Loss = " + loss);
}
  
// Driver Code
public static void main(String[] args) 
{
    int SP = 2400, P = 30;
  
    // Calling Function
    Loss(SP, P);
}
}
  
// This code has been contributed by 29AjayKumar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of above approach. 
  
# Function that will find loss 
def Loss(SP, P): 
      
    loss = 0
    loss = ((2 * P * P * SP) / 
            (100 * 100 - P * P)) 
    print("Loss =", round(loss, 3)) 
  
# Driver Code 
if __name__ == "__main__":
  
    SP, P = 2400, 30
  
    # Calling Function 
    Loss(SP, P) 
  
# This code is contributed by Rituraj Jain

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of above approach.
class GFG 
{
  
// Function that will
// find loss
static void Loss(int SP, int P)
{
  
    double loss = 0;
  
    loss = (double)(2 * P * P * SP) / (100 * 100 - P * P);
  
    System.Console.WriteLine("Loss = "
                            System.Math.Round(loss,3));
}
  
// Driver Code
static void Main() 
{
    int SP = 2400, P = 30;
  
    // Calling Function
    Loss(SP, P);
}
}
  
// This code has been contributed by mits

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of above approach. 
  
// Function that will find loss 
function Loss($SP, $P)
{
      
    $loss = 0;
    $loss = ((2 * $P * $P * $SP) / 
          (100 * 100 - $P * $P)); 
    print("Loss = " . round($loss, 3)); 
}
  
// Driver Code 
$SP = 2400;
$P = 30;
  
// Calling Function 
Loss($SP, $P); 
  
// This code is contributed by mits
?>

chevron_right


Output:

Loss = 474.725

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :