# Longest Substring of 1’s after removing one character

• Difficulty Level : Medium
• Last Updated : 20 Aug, 2021

Given a binary string S of length N, the task is to find the longest substring consisting of ‘1’s only present in the string after deleting a character from the string.

Examples:

Input: S = “1101”
Output: 3
Explanation:
Removing S, S modifies to “101”. Longest possible substring of ‘1’s is 1.
Removing S, S modifies to “101”. Longest possible substring of ‘1’s is 1.
Removing S, S modifies to “111”. Longest possible substring of ‘1’s is 3.
Removing S, S modifies to “110”. Longest possible substring of ‘1’s is 2.
Therefore, longest substring of ‘1’s that can be obtained is 3.

Input: S = “011101101”
Output: 5

Method 1: The idea is to traverse the string and search for ‘0’s in the given string. For every character which is found to be ‘0’, add the length of its adjacent substrings of ‘1’. Print the maximum of all such lengths obtained.

Below is the implementation of the above approach:

## C++

 `// C++ Program to implement``// the above approach``#include ``using` `namespace` `std;` `// Function to calculate the length of the``// longest substring of '1's that can be``// obtained by deleting one character``int` `longestSubarray(string s)``{``    ``// Add '0' at the end``    ``s += ``'0'``;` `    ``// Iterator to traverse the string``    ``int` `i;` `    ``// Stores maximum length``    ``// of required substring``    ``int` `res = 0;` `    ``// Stores length of substring of '1'``    ``// preceding the current character``    ``int` `prev_one = 0;` `    ``// Stores length of substring of '1'``    ``// succeeding the current character``    ``int` `curr_one = 0;` `    ``// Counts number of '0's``    ``int` `numberOfZeros = 0;` `    ``// Traverse the string S``    ``for` `(i = 0; i < s.length(); i++) {` `        ``// If current character is '1'``        ``if` `(s[i] == ``'1'``) {` `            ``// Increase curr_one by one``            ``curr_one += 1;``        ``}` `        ``// Otherwise``        ``else` `{` `            ``// Increment numberofZeros by one``            ``numberOfZeros += 1;` `            ``// Count length of substring``            ``// obtained y concatenating``            ``// preceding and succeeding substrings of '1'``            ``prev_one += curr_one;` `            ``// Store maximum size in res``            ``res = max(res, prev_one);` `            ``// Assign curr_one to prev_one``            ``prev_one = curr_one;` `            ``// Reset curr_one``            ``curr_one = 0;``        ``}``    ``}` `    ``// If string contains only one '0'``    ``if` `(numberOfZeros == 1) {``        ``res -= 1;``    ``}` `    ``// Return the answer``    ``return` `res;``}` `// Driver Code``int` `main()``{``    ``string S = ``"1101"``;``    ``cout << longestSubarray(S);``    ``return` `0;``}`

## Java

 `// Java program to implement``// the above approach``import` `java.util.Arrays;`` ` `class` `GFG{``     ` `// Function to calculate the length of the``// longest substring of '1's that can be``// obtained by deleting one character``static` `int` `longestSubarray(String s)``{``    ` `    ``// Add '0' at the end``    ``s += ``'0'``;``    ` `    ``// Iterator to traverse the string``    ``int` `i;``    ` `    ``// Stores maximum length``    ``// of required substring``    ``int` `res = ``0``;``    ` `    ``// Stores length of substring of '1'``    ``// preceding the current character``    ``int` `prev_one = ``0``;`` ` `    ``// Stores length of substring of '1'``    ``// succeeding the current character``    ``int` `curr_one = ``0``;`` ` `    ``// Counts number of '0's``    ``int` `numberOfZeros = ``0``;`` ` `    ``// Traverse the string S``    ``for``(i = ``0``; i < s.length(); i++)``    ``{``        ` `        ``// If current character is '1'``        ``if` `(s.charAt(i) == ``'1'``)``        ``{``            ` `            ``// Increase curr_one by one``            ``curr_one += ``1``;``        ``}`` ` `        ``// Otherwise``        ``else``        ``{``            ` `            ``// Increment numberofZeros by one``            ``numberOfZeros += ``1``;`` ` `            ``// Count length of substring``            ``// obtained y concatenating``            ``// preceding and succeeding``            ``// substrings of '1'``            ``prev_one += curr_one;`` ` `            ``// Store maximum size in res``            ``res = Math.max(res, prev_one);`` ` `            ``// Assign curr_one to prev_one``            ``prev_one = curr_one;`` ` `            ``// Reset curr_one``            ``curr_one = ``0``;``        ``}``    ``}`` ` `    ``// If string contains only one '0'``    ``if` `(numberOfZeros == ``1``)``    ``{``        ``res -= ``1``;``    ``}``    ` `    ``// Return the answer``    ``return` `res;``}`` ` `// Driver Code``public` `static` `void` `main (String[] args)``{``    ``String S = ``"1101"``;``    ` `    ``System.out.println(longestSubarray(S));``}``}` `// This code is contributed by code_hunt`

## Python3

 `# Python3 program to implement``# the above approach` `# Function to calculate the length of the``# longest substring of '1's that can be``# obtained by deleting one character``def` `longestSubarray(s):``    ` `    ``# Add '0' at the end``    ``s ``+``=` `'0'` `    ``# Iterator to traverse the string``    ``i ``=` `0` `    ``# Stores maximum length``    ``# of required substring``    ``res ``=` `0` `    ``# Stores length of substring of '1'``    ``# preceding the current character``    ``prev_one ``=` `0` `    ``# Stores length of substring of '1'``    ``# succeeding the current character``    ``curr_one ``=` `0` `    ``# Counts number of '0's``    ``numberOfZeros ``=` `0` `    ``# Traverse the string S``    ``for` `i ``in` `range``(``len``(s)):``        ` `        ``# If current character is '1'``        ``if` `(s[i] ``=``=` `'1'``):``            ` `            ``# Increase curr_one by one``            ``curr_one ``+``=` `1` `        ``# Otherwise``        ``else``:``            ` `            ``# Increment numberofZeros by one``            ``numberOfZeros ``+``=` `1` `            ``# Count length of substring``            ``# obtained y concatenating``            ``# preceding and succeeding``            ``# substrings of '1'``            ``prev_one ``+``=` `curr_one` `            ``# Store maximum size in res``            ``res ``=` `max``(res, prev_one)` `            ``# Assign curr_one to prev_one``            ``prev_one ``=` `curr_one` `            ``# Reset curr_one``            ``curr_one ``=` `0` `    ``# If string contains only one '0'``    ``if` `(numberOfZeros ``=``=` `1``):``        ``res ``-``=` `1` `    ``# Return the answer``    ``return` `res` `# Driver Code``if` `__name__ ``=``=` `'__main__'``:``    ` `    ``S ``=` `"1101"``    ` `    ``print``(longestSubarray(S))` `# This code is contributed by ipg2016107`

## C#

 `// C# program to implement``// the above approach``using` `System;``class` `GFG``{``     ` `// Function to calculate the length of the``// longest substring of '1's that can be``// obtained by deleting one character``static` `int` `longestSubarray(String s)``{``    ` `    ``// Add '0' at the end``    ``s += ``'0'``;``    ` `    ``// Iterator to traverse the string``    ``int` `i;``    ` `    ``// Stores maximum length``    ``// of required substring``    ``int` `res = 0;``    ` `    ``// Stores length of substring of '1'``    ``// preceding the current character``    ``int` `prev_one = 0;`` ` `    ``// Stores length of substring of '1'``    ``// succeeding the current character``    ``int` `curr_one = 0;`` ` `    ``// Counts number of '0's``    ``int` `numberOfZeros = 0;`` ` `    ``// Traverse the string S``    ``for``(i = 0; i < s.Length; i++)``    ``{``        ` `        ``// If current character is '1'``        ``if` `(s[i] == ``'1'``)``        ``{``            ` `            ``// Increase curr_one by one``            ``curr_one += 1;``        ``}`` ` `        ``// Otherwise``        ``else``        ``{``            ` `            ``// Increment numberofZeros by one``            ``numberOfZeros += 1;`` ` `            ``// Count length of substring``            ``// obtained y concatenating``            ``// preceding and succeeding``            ``// substrings of '1'``            ``prev_one += curr_one;`` ` `            ``// Store maximum size in res``            ``res = Math.Max(res, prev_one);`` ` `            ``// Assign curr_one to prev_one``            ``prev_one = curr_one;`` ` `            ``// Reset curr_one``            ``curr_one = 0;``        ``}``    ``}`` ` `    ``// If string contains only one '0'``    ``if` `(numberOfZeros == 1)``    ``{``        ``res -= 1;``    ``}``    ` `    ``// Return the answer``    ``return` `res;``}`` ` `// Driver Code``public` `static` `void` `Main(String[] args)``{``    ``String S = ``"1101"``;``    ` `    ``Console.WriteLine(longestSubarray(S));``}``}`  `// This code is contributed by shikhasingrajput`

## Javascript

 ``
Output:
`3`

Time Complexity: O(N)
Auxiliary Space: O(N)

Method 2: Alternate approach to solve the problem is to use sliding window technique for finding the maximum length of substring containing only ‘1’s after deleting a single character. Follow the steps below to solve the problem:

• Initialize 3 integer variables i, j, with 0 and k with 1
• Iterate over the characters of the string S.
• For every character traversed, check if it is ‘0’ or not. If found to be true, decrement k by 1.
• If k < 0 and character at ith index is ‘0’, increment k and i by one
• Increment j by one.
• Finally, print the length j – i – 1 after complete traversal of the string.

Below is the implementation of the above approach:

## C++

 `// C++ Program to implement``// the above approach``#include ``using` `namespace` `std;` `// Function to calculate the length of the``// longest substring of '1's that can be``// obtained by deleting one character``int` `longestSubarray(string s)``{``    ``// Initializing i and j as left and``    ``// right boundaries of sliding window``    ``int` `i = 0, j = 0, k = 1;` `    ``for` `(j = 0; j < s.size(); ++j) {` `        ``// If current character is '0'``        ``if` `(s[j] == ``'0'``)` `            ``// Decrement k by one``            ``k--;` `        ``// If k is less than zero and character``        ``// at ith index is '0'``        ``if` `(k < 0 && s[i++] == ``'0'``)``            ``k++;``    ``}` `    ``// Return result``    ``return` `j - i - 1;``}` `// Driver Code``int` `main()``{``    ``string S = ``"011101101"``;``    ``cout << longestSubarray(S);` `    ``return` `0;``}`

## Java

 `// Java Program to implement``// the above approach` `import` `java.util.*;` `class` `GFG{` `// Function to calculate the length of the``// longest subString of '1's that can be``// obtained by deleting one character``static` `int` `longestSubarray(String s)``{``    ``// Initializing i and j as left and``    ``// right boundaries of sliding window``    ``int` `i = ``0``, j = ``0``, k = ``1``;` `    ``for` `(j = ``0``; j < s.length(); ++j)``    ``{` `        ``// If current character is '0'``        ``if` `(s.charAt(j) == ``'0'``)` `            ``// Decrement k by one``            ``k--;` `        ``// If k is less than zero and character``        ``// at ith index is '0'``        ``if` `(k < ``0` `&& s.charAt(i++) == ``'0'``)``            ``k++;``    ``}` `    ``// Return result``    ``return` `j - i - ``1``;``}` `// Driver Code``public` `static` `void` `main(String[] args)``{``    ``String S = ``"011101101"``;``    ``System.out.print(longestSubarray(S));` `}``}` `// This code contributed by gauravrajput1`

## Python3

 `# Python3 program to implement``# the above approach` `# Function to calculate the length of the``# longest substring of '1's that can be``# obtained by deleting one character``def` `longestSubarray(s):``    ` `    ``# Initializing i and j as left and``    ``# right boundaries of sliding window``    ``i ``=` `0``    ``j ``=` `0``    ``k ``=` `1` `    ``for` `j ``in` `range``(``len``(s)):``        ` `        ``# If current character is '0'``        ``if` `(s[j] ``=``=` `'0'``):` `            ``# Decrement k by one``            ``k ``-``=` `1` `        ``# If k is less than zero and character``        ``# at ith index is '0'``        ``if` `(k < ``0` `):``            ``if` `s[i] ``=``=` `'0'``:``                ``k ``+``=` `1``                ` `            ``i ``+``=` `1``            ` `    ``j ``+``=` `1` `    ``# Return result``    ``return` `j ``-` `i ``-` `1` `# Driver Code``if` `__name__ ``=``=` `"__main__"` `:` `    ``S ``=` `"011101101"``    ` `    ``print``(longestSubarray(S))` `# This code is contributed by AnkThon`

## C#

 `// C# program to implement``// the above approach``using` `System;` `class` `GFG{` `// Function to calculate the length of the``// longest subString of '1's that can be``// obtained by deleting one character``static` `int` `longestSubarray(``string` `s)``{``    ` `    ``// Initializing i and j as left and``    ``// right boundaries of sliding window``    ``int` `i = 0, j = 0, k = 1;` `    ``for``(j = 0; j < s.Length; ++j)``    ``{``        ` `        ``// If current character is '0'``        ``if` `(s[j] == ``'0'``)``        ` `            ``// Decrement k by one``            ``k -= 1;` `        ``// If k is less than zero and character``        ``// at ith index is '0'``        ``if` `(k < 0 && s[i++] == ``'0'``)``            ``k++;``    ``}` `    ``// Return result``    ``return` `j - i - 1;``}` `// Driver Code``public` `static` `void` `Main(``string``[] args)``{``    ``string` `S = ``"011101101"``;``    ` `    ``Console.Write(longestSubarray(S));``}``}` `// This code is contributed by AnkThon`

## Javascript

 ``
Output:
`5`

Time complexity: O(N)
Auxiliary Space: O(N)

My Personal Notes arrow_drop_up