Skip to content
Related Articles

Related Articles

Improve Article
Longest subsequence such that absolute difference between every pair is atmost 1
  • Last Updated : 11 Jun, 2021

Given an integer array arr[] of size N, the task is to find the longest subsequence S such that for every a[i], a[j] ∈ S and |a[i] – a[j]| ≤ 1.
Examples: 
 

Input: arr[] = {2, 2, 3, 5, 5, 6, 6, 6} 
Output:
Explanation: 
There are 2 such subsequence such that difference between every pair is atmost 1 
{2, 2, 3} and {5, 5, 6, 6, 6} 
The longest one of these is {5, 5, 6, 6, 6} with length of 5.
Input: arr[] = {5, 7, 6, 4, 4, 2} 
Output:
 

 

Approach:
The idea is to observe that for a subsequence with difference between every possible pair atmost one is possible when the subsequence contains elements between [X , X + 1].
 

  • Intialize the maximum length of required subsequence to 0.
  • Create a HashMap to store frequency of every element of the array.
  • Interate through the Hash Map and for every element a[i] in hash map – 
    • Find the count of occurrence of element (a[i] + 1), (a[i]) and (a[i] – 1).
    • Find the Maximum count out of occurrence of elements (a[i] + 1) or (a[i] – 1).
    • If the Total count of occurrence is greater than the maximum length found then update the maximum length of subsequence.

Below is the implementation of above approach.
 



Java




// Java implementation for
// Longest subsequence such that absolute
// difference between every pair is atmost 1
 
import java.util.*;
public class GeeksForGeeks {
    public static int longestAr(
            int n, int arr[]){
        Hashtable<Integer, Integer> count
            = new Hashtable<Integer, Integer>();
 
        // Storing the frequency of each
        // element in the hashtable count
        for (int i = 0; i < n; i++) {
            if (count.containsKey(arr[i]))
                count.put(arr[i], count.get(
                    arr[i]) + 1
                );
            else
                count.put(arr[i], 1);
        }
 
        Set<Integer> kset = count.keySet();
        Iterator<Integer> it = kset.iterator();
 
        // Max is used to keep a track of
        // maximum length of the required
        // subsequence so far.
        int max = 0;
 
        while (it.hasNext()) {
            int a = (int)it.next();
            int cur = 0;
            int cur1 = 0;
            int cur2 = 0;
 
            // Store frequency of the
            // given element+1.
            if (count.containsKey(a + 1))
                cur1 = count.get(a + 1);
 
            // Store frequency of the
            // given element-1.
            if (count.containsKey(a - 1))
                cur2 = count.get(a - 1);
 
            // cur store the longest array
            // that can be formed using a.
            cur = count.get(a) +
                  Math.max(cur1, cur2);
 
            // update max if cur>max.
            if (cur > max)
                max = cur;
        }
 
        return (max);
    }
     
    // Driver Code
    public static void main(String[] args)
    {
        int n = 8;
        int arr[] = { 2, 2, 3, 5, 5, 6, 6, 6 };
        int maxLen = longestAr(n, arr);
        System.out.println(maxLen);
    }
}

Python3




# Python3 implementation for
# Longest subsequence such that absolute
# difference between every pair is atmost 1
 
def longestAr(n, arr):
    count = dict()
 
    # Storing the frequency of each
    # element in the hashtable count
    for i in arr:
        count[i] = count.get(i, 0) + 1
 
    kset = count.keys()
 
    # Max is used to keep a track of
    # maximum length of the required
    # subsequence so far.
    maxm = 0
 
    for it in list(kset):
        a = it
        cur = 0
        cur1 = 0
        cur2 = 0
 
        # Store frequency of the
        # given element+1.
        if ((a + 1) in count):
            cur1 = count[a + 1]
 
        # Store frequency of the
        # given element-1.
        if ((a - 1) in count):
            cur2 = count[a - 1]
 
        # cur store the longest array
        # that can be formed using a.
        cur = count[a] + max(cur1, cur2)
 
        # update maxm if cur>maxm.
        if (cur > maxm):
            maxm = cur
 
    return maxm
 
# Driver Code
if __name__ == '__main__':
    n = 8
    arr = [2, 2, 3, 5, 5, 6, 6, 6]
    maxLen = longestAr(n, arr)
    print(maxLen)
 
# This code is contributed by mohit kumar 29

Javascript




<script>
// Javascript implementation for
// Longest subsequence such that absolute
// difference between every pair is atmost 1
 
function longestAr(n,arr)
{
    let count = new Map();
   
        // Storing the frequency of each
        // element in the hashtable count
        for (let i = 0; i < n; i++) {
            if (count.has(arr[i]))
                count.set(arr[i], count.get(
                    arr[i]) + 1
                );
            else
                count.set(arr[i], 1);
        }
   
         
   
        // Max is used to keep a track of
        // maximum length of the required
        // subsequence so far.
        let max = 0;
   
        for(let it of count.keys()) {
            let a = it;
            let cur = 0;
            let cur1 = 0;
            let cur2 = 0;
   
            // Store frequency of the
            // given element+1.
            if (count.has(a + 1))
                cur1 = count.get(a + 1);
   
            // Store frequency of the
            // given element-1.
            if (count.has(a - 1))
                cur2 = count.get(a - 1);
   
            // cur store the longest array
            // that can be formed using a.
            cur = count.get(a) +
                  Math.max(cur1, cur2);
   
            // update max if cur>max.
            if (cur > max)
                max = cur;
        }
   
        return (max);
}
 
// Driver Code
let n = 8;
let arr=[2, 2, 3, 5, 5, 6, 6, 6];
let maxLen = longestAr(n, arr);
document.write(maxLen);
         
 
 
// This code is contributed by unknown2108
</script>
Output: 
5

 

Time Complexity: O(n). 
Space Complexity: O(n).
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :