Open In App
Related Articles

Longest subsequence such that absolute difference between every pair is atmost 1

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an integer array arr[] of size N, the task is to find the longest subsequence S such that for every a[i], a[j] ∈ S and |a[i] – a[j]| ≤ 1.

Examples:  

Input: arr[] = {2, 2, 3, 5, 5, 6, 6, 6} 
Output:
Explanation: 
There are 2 such subsequence such that difference between every pair is atmost 1 
{2, 2, 3} and {5, 5, 6, 6, 6} 
The longest one of these is {5, 5, 6, 6, 6} with length of 5.

Input: arr[] = {5, 7, 6, 4, 4, 2} 
Output:

Approach:
The idea is to observe that for a subsequence with a difference between every possible pair at most one is possible when the subsequence contains elements between [X , X + 1].

  • Initialize the maximum length of the required subsequence to 0.
  • Create a HashMap to store the frequency of every element of the array.
  • Iterate through the Hash Map and for every element a[i] in hash map – 
    • Find the count of occurrence of element (a[i] + 1), (a[i]) and (a[i] – 1).
    • Find the Maximum count out of occurrence of elements (a[i] + 1) or (a[i] – 1).
    • If the Total count of occurrence is greater than the maximum length found then update the maximum length of subsequence.

Below is the implementation of the above approach. 

C++




#include <iostream>
#include <unordered_map>
#include <algorithm>
using namespace std;
 
// C++ implementation for
// Longest subsequence such that absolute
// difference between every pair is atmost 1
int longestAr(int n, int arr[]) {
    unordered_map<int, int> count;
 
    // Storing the frequency of each
    // element in the unordered_map count
    for (int i = 0; i < n; i++) {
        if (count.find(arr[i]) != count.end())
            count[arr[i]]++;
        else
            count[arr[i]] = 1;
    }
 
    unordered_map<int, int>::iterator it;
 
    // Max is used to keep a track of
    // maximum length of the required
    // subsequence so far.
    int max_val = 0;
 
    for (it = count.begin(); it != count.end(); it++) {
        int a = it->first;
        int cur = 0;
        int cur1 = 0;
        int cur2 = 0;
 
        // Store frequency of the
        // given element+1.
        if (count.find(a + 1) != count.end())
            cur1 = count[a + 1];
 
        // Store frequency of the
        // given element-1.
        if (count.find(a - 1) != count.end())
            cur2 = count[a - 1];
 
        // cur store the longest array
        // that can be formed using a.
        cur = count[a] + max(cur1, cur2);
 
        // update max_val if cur > max_val.
        if (cur > max_val)
            max_val = cur;
    }
 
    return max_val;
}
 
// Driver Code
int main() {
    int n = 8;
    int arr[] = { 2, 2, 3, 5, 5, 6, 6, 6 };
    int maxLen = longestAr(n, arr);
    cout << maxLen << endl;
    return 0;
}


Java




// Java implementation for
// Longest subsequence such that absolute
// difference between every pair is atmost 1
 
import java.util.*;
public class GeeksForGeeks {
    public static int longestAr(
            int n, int arr[]){
        Hashtable<Integer, Integer> count
            = new Hashtable<Integer, Integer>();
 
        // Storing the frequency of each
        // element in the hashtable count
        for (int i = 0; i < n; i++) {
            if (count.containsKey(arr[i]))
                count.put(arr[i], count.get(
                    arr[i]) + 1
                );
            else
                count.put(arr[i], 1);
        }
 
        Set<Integer> kset = count.keySet();
        Iterator<Integer> it = kset.iterator();
 
        // Max is used to keep a track of
        // maximum length of the required
        // subsequence so far.
        int max = 0;
 
        while (it.hasNext()) {
            int a = (int)it.next();
            int cur = 0;
            int cur1 = 0;
            int cur2 = 0;
 
            // Store frequency of the
            // given element+1.
            if (count.containsKey(a + 1))
                cur1 = count.get(a + 1);
 
            // Store frequency of the
            // given element-1.
            if (count.containsKey(a - 1))
                cur2 = count.get(a - 1);
 
            // cur store the longest array
            // that can be formed using a.
            cur = count.get(a) +
                  Math.max(cur1, cur2);
 
            // update max if cur>max.
            if (cur > max)
                max = cur;
        }
 
        return (max);
    }
     
    // Driver Code
    public static void main(String[] args)
    {
        int n = 8;
        int arr[] = { 2, 2, 3, 5, 5, 6, 6, 6 };
        int maxLen = longestAr(n, arr);
        System.out.println(maxLen);
    }
}


Python3




# Python3 implementation for
# Longest subsequence such that absolute
# difference between every pair is atmost 1
 
def longestAr(n, arr):
    count = dict()
 
    # Storing the frequency of each
    # element in the hashtable count
    for i in arr:
        count[i] = count.get(i, 0) + 1
 
    kset = count.keys()
 
    # Max is used to keep a track of
    # maximum length of the required
    # subsequence so far.
    maxm = 0
 
    for it in list(kset):
        a = it
        cur = 0
        cur1 = 0
        cur2 = 0
 
        # Store frequency of the
        # given element+1.
        if ((a + 1) in count):
            cur1 = count[a + 1]
 
        # Store frequency of the
        # given element-1.
        if ((a - 1) in count):
            cur2 = count[a - 1]
 
        # cur store the longest array
        # that can be formed using a.
        cur = count[a] + max(cur1, cur2)
 
        # update maxm if cur>maxm.
        if (cur > maxm):
            maxm = cur
 
    return maxm
 
# Driver Code
if __name__ == '__main__':
    n = 8
    arr = [2, 2, 3, 5, 5, 6, 6, 6]
    maxLen = longestAr(n, arr)
    print(maxLen)
 
# This code is contributed by mohit kumar 29


Javascript




<script>
// Javascript implementation for
// Longest subsequence such that absolute
// difference between every pair is atmost 1
 
function longestAr(n,arr)
{
    let count = new Map();
   
        // Storing the frequency of each
        // element in the hashtable count
        for (let i = 0; i < n; i++) {
            if (count.has(arr[i]))
                count.set(arr[i], count.get(
                    arr[i]) + 1
                );
            else
                count.set(arr[i], 1);
        }
   
         
   
        // Max is used to keep a track of
        // maximum length of the required
        // subsequence so far.
        let max = 0;
   
        for(let it of count.keys()) {
            let a = it;
            let cur = 0;
            let cur1 = 0;
            let cur2 = 0;
   
            // Store frequency of the
            // given element+1.
            if (count.has(a + 1))
                cur1 = count.get(a + 1);
   
            // Store frequency of the
            // given element-1.
            if (count.has(a - 1))
                cur2 = count.get(a - 1);
   
            // cur store the longest array
            // that can be formed using a.
            cur = count.get(a) +
                  Math.max(cur1, cur2);
   
            // update max if cur>max.
            if (cur > max)
                max = cur;
        }
   
        return (max);
}
 
// Driver Code
let n = 8;
let arr=[2, 2, 3, 5, 5, 6, 6, 6];
let maxLen = longestAr(n, arr);
document.write(maxLen);
         
 
 
// This code is contributed by unknown2108
</script>


C#




// Include namespace system
using System;
using System.Linq;
 
using System.Collections;
using System.Collections.Generic;
 
 
 
public class GeeksForGeeks
{
    public static int longestAr(int n, int[] arr)
    {
        var count = new Dictionary<int, int>();
        // Storing the frequency of each
        // element in the hashtable count
        for (int i = 0; i < n; i++)
        {
            if (count.ContainsKey(arr[i]))
            {
                count[arr[i]] = count[arr[i]] + 1;
            }
            else
            {
                count[arr[i]] = 1;
            }
        }
        var kset = count.Keys;
        var it = kset.GetEnumerator();
        // Max is used to keep a track of
        // maximum length of the required
        // subsequence so far.
        var max = 0;
        while (it.MoveNext())
        {
            var a = (int)it.Current;
            var cur = 0;
            var cur1 = 0;
            var cur2 = 0;
            // Store frequency of the
            // given element+1.
            if (count.ContainsKey(a + 1))
            {
                cur1 = count[a + 1];
            }
            // Store frequency of the
            // given element-1.
            if (count.ContainsKey(a - 1))
            {
                cur2 = count[a - 1];
            }
            // cur store the longest array
            // that can be formed using a.
            cur = count[a] + Math.Max(cur1,cur2);
            // update max if cur>max.
            if (cur > max)
            {
                max = cur;
            }
        }
        return (max);
    }
    // Driver Code
    public static void Main(String[] args)
    {
        var n = 8;
        int[] arr = {2, 2, 3, 5, 5, 6, 6, 6};
        var maxLen = longestAr(n, arr);
        Console.WriteLine(maxLen);
    }
}


Output: 

5

 

Time Complexity: O(n). 
Space Complexity: O(n).
 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 02 Mar, 2023
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials