Related Articles
Longest subsequence having maximum sum
• Difficulty Level : Medium
• Last Updated : 07 Dec, 2020

Given an array arr[] of size N, the task is to find the longest non-empty subsequence from the given array whose sum is maximum.

Examples:

Input: arr[] = { 1, 2, -4, -2, 3, 0 }
Output: 1 2 3 0
Explanation:
Sum of elements of the subsequence {1, 2, 3, 0} is 6 which is the maximum possible sum.
Therefore, the required output is 1 2 3 0

Input: arr[] = { -10, -6, -2, -3, -4 }
Output: -2

Naive Approach: The simplest approach to solve this problem is to traverse the array and generate all possible subsequence of the given array and calculate their sums. Print the longest of all subsequences with maximum sum.

Time Complexity: O(N * 2N)
Auxiliary Space: O(N)

Efficient Approach: The problem can be solved using Greedy technique. Follow the steps below to solve the problem:

Below is the implementation of the above approach:

## C++

 `// C++ program to implement` `// the above approach`   `#include ` `using` `namespace` `std;`   `// Function to find the longest subsequence` `// from the given array with maximum sum` `void` `longestSubWithMaxSum(``int` `arr[], ``int` `N)` `{` `    ``// Stores the largest element` `    ``// of the array` `    ``int` `Max = *max_element(arr,` `                           ``arr + N);`   `    ``// If Max is less than 0` `    ``if` `(Max < 0) {`   `        ``// Print the largest element` `        ``// of the array` `        ``cout << Max;` `        ``return``;` `    ``}`   `    ``// Traverse the array` `    ``for` `(``int` `i = 0; i < N; i++) {`   `        ``// If arr[i] is greater` `        ``// than or equal to 0` `        ``if` `(arr[i] >= 0) {`   `            ``// Print elements of` `            ``// the subsequence` `            ``cout << arr[i] << ``" "``;` `        ``}` `    ``}` `}`   `// Driver Code` `int` `main()` `{` `    ``int` `arr[] = { 1, 2, -4, -2, 3, 0 };`   `    ``int` `N = ``sizeof``(arr) / ``sizeof``(arr);`   `    ``longestSubWithMaxSum(arr, N);` `    ``return` `0;` `}`

## Java

 `// Java program to implement ` `// the above approach ` `import` `java.util.*;` ` `  `class` `GFG{` ` `  `// Function to find the longest subsequence` `// from the given array with maximum sum` `static` `void` `longestSubWithMaxSum(``int` `arr[], ``int` `N)` `{` `    `  `    ``// Stores the largest element` `    ``// of the array` `    ``int` `Max = Arrays.stream(arr).max().getAsInt(); ` ` `  `    ``// If Max is less than 0` `    ``if` `(Max < ``0``) ` `    ``{` `        `  `        ``// Print the largest element` `        ``// of the array` `        ``System.out.print(Max);` `        ``return``;` `    ``}` ` `  `    ``// Traverse the array` `    ``for``(``int` `i = ``0``; i < N; i++)` `    ``{` `        `  `        ``// If arr[i] is greater` `        ``// than or equal to 0` `        ``if` `(arr[i] >= ``0``) ` `        ``{` `            `  `            ``// Print elements of` `            ``// the subsequence` `            ``System.out.print(arr[i] + ``" "``);` `        ``}` `    ``}` `}` ` `  `// Driver Code` `public` `static` `void` `main(String[] args)` `{` `    ``int` `arr[] = { ``1``, ``2``, -``4``, -``2``, ``3``, ``0` `};` `    ``int` `N = arr.length;` ` `  `    ``longestSubWithMaxSum(arr, N);` `}` `}`   `// This code is contributed by code_hunt`

## Python3

 `# Python3 program to implement` `# the above approach`   `# Function to find the longest subsequence` `# from the given array with maximum sum` `def` `longestSubWithMaxSum(arr, N):`   `    ``# Stores the largest element` `    ``# of the array` `    ``Max` `=` `max``(arr)`   `    ``# If Max is less than 0` `    ``if` `(``Max` `< ``0``) :`   `        ``# Print the largest element` `        ``# of the array` `        ``print``(``Max``)` `        ``return`   `    ``# Traverse the array` `    ``for` `i ``in` `range``(N):`   `        ``# If arr[i] is greater` `        ``# than or equal to 0` `        ``if` `(arr[i] >``=` `0``) :`   `            ``# Print elements of` `            ``# the subsequence` `            ``print``(arr[i], end ``=` `" "``)`   `# Driver code` `arr ``=` `[ ``1``, ``2``, ``-``4``, ``-``2``, ``3``, ``0` `]`   `N ``=` `len``(arr)`   `longestSubWithMaxSum(arr, N)`   `# This code is contributed divyeshrabadiya07`

## C#

 `// C# program to implement ` `// the above approach ` `using` `System;`   `class` `GFG{` ` `  `// Function to find the longest subsequence` `// from the given array with maximum sum` `static` `void` `longestSubWithMaxSum(``int` `[]arr,` `                                 ``int` `N)` `{` `    `  `    ``// Stores the largest element` `    ``// of the array` `    ``int` `Max = arr;` `    `  `    ``for``(``int` `i = 1; i < N; i++)` `    ``{` `        ``if` `(Max < arr[i])` `            ``Max = arr[i];` `    ``}` `    `  `    ``// If Max is less than 0` `    ``if` `(Max < 0) ` `    ``{` `        `  `        ``// Print the largest element` `        ``// of the array` `        ``Console.Write(Max);` `        ``return``;` `    ``}` `    `  `    ``// Traverse the array` `    ``for``(``int` `i = 0; i < N; i++)` `    ``{` `        `  `        ``// If arr[i] is greater` `        ``// than or equal to 0` `        ``if` `(arr[i] >= 0) ` `        ``{` `            `  `            ``// Print elements of` `            ``// the subsequence` `            ``Console.Write(arr[i] + ``" "``);` `        ``}` `    ``}` `}` ` `  `// Driver Code` `public` `static` `void` `Main(String[] args)` `{` `    ``int` `[]arr = { 1, 2, -4, -2, 3, 0 };` `    ``int` `N = arr.Length;` ` `  `    ``longestSubWithMaxSum(arr, N);` `}` `}`   `// This code is contributed by aashish1995`

Output:

`1 2 3 0`

Time Complexity: O(N)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :