Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Longest subsequence having greater corner values

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given an array arr[] containing a random permutation of first N natural numbers, the task is to find the longest sub-sequence having the property that the first and the last elements are greater than all the other sub-sequence elements.

Examples: 

Input: arr[] = {3, 1, 5, 2, 4} 
Output:
The sub-sequence is {3, 1, 2, 4}. The corner elements of this subsequence are greater than all other elements.

Input: arr[] = {1, 2, 3, 4, 5} 
Output:
We cannot make a subsequence of size greater than 2.
 

Approach: If we fix the leftmost and the rightmost elements of a sub-sequence, we are interested in counting how many elements between them have a smaller value than both. A straightforward implementation of this idea has a complexity of O(N3). 
In order to reduce the complexity, we approach the problem differently. Instead of fixing the ends of the sub-sequence, we fix the elements in between. The idea is that for a given X (1 ≤ X ≤ N), we want to find two elements greater or equal to X, that have between them as many elements as possible less than X. For a fixed X it’s optimal to choose the leftmost and rightmost elements ≤ X. Now we have a better O(N2) solution. 
As X increases, the leftmost element can only increase, while the rightmost one can only decrease. We can use a pointer for each of them to get an amortised complexity of O(N).

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include<bits/stdc++.h>
using namespace std;
 
#define MAXN 100005
 
// Function to return the length of the
// longest required sub-sequence
int longestSubSeq(int n, int arr [])
{
    int max_length = 0;
 
    // Create a position array to find
    // where an element is present
    int pos[MAXN];
 
    for (int i = 0; i < n; i++)
        pos[arr[i] - 1] = i;
 
    int left = n, right = 0;
 
    for (int i = n - 1, num = 1; i >= 0;
                       i -= 1, num += 1)
    {
 
        // Store the minimum position
        // to the left
        left = min(left, pos[i]);
 
        // Store the maximum position to
        // the right
        right = max(right, pos[i]);
 
        // Recompute current maximum
        max_length = max(max_length,
                         right - left - num + 3);
    }
 
    // Edge case when there is a single
    // element in the sequence
    if (n == 1)
        max_length = 1;
 
    return max_length;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 3, 4, 5 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << longestSubSeq(n, arr);
}
 
// This code is contributed by ihritik

Java




// Java implementation of the approach
class GFG {
 
    static int MAXN = (int)1e5 + 5;
 
    // Function to return the length of the
    // longest required sub-sequence
    static int longestSubSeq(int n, int[] arr)
    {
        int max_length = 0;
 
        // Create a position array to find
        // where an element is present
        int[] pos = new int[MAXN];
 
        for (int i = 0; i < n; i++)
            pos[arr[i] - 1] = i;
 
        int left = n, right = 0;
 
        for (int i = n - 1, num = 1; i >= 0;
                         i -= 1, num += 1) {
 
            // Store the minimum position
            // to the left
            left = Math.min(left, pos[i]);
 
            // Store the maximum position to
            // the right
            right = Math.max(right, pos[i]);
 
            // Recompute current maximum
            max_length = Math.max(max_length,
                      right - left - num + 3);
        }
 
        // Edge case when there is a single
        // element in the sequence
        if (n == 1)
            max_length = 1;
 
        return max_length;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = { 1, 2, 3, 4, 5 };
        int n = arr.length;
        System.out.println(longestSubSeq(n, arr));
    }
}

Python3




# Python3 implementation of the approach
 
MAXN = 100005
 
# Function to return the length of the
# longest required sub-sequence
def longestSubSeq(n, arr):
 
    max_length = 0
 
    # Create a position array to find
    # where an element is present
    pos = [0] * MAXN
 
    for i in range (0, n):
        pos[arr[i] - 1] = i
 
    left = n
    right = 0
    num = 1
     
    for i in range (n - 1, -1, -1) :
 
        # Store the minimum position
        # to the left
        left = min(left, pos[i])
 
        # Store the maximum position to
        # the right
        right = max(right, pos[i])
 
        # Recompute current maximum
        max_length = max(max_length,
                right - left - num + 3)
     
        num = num + 1
         
    # Edge case when there is a single
    # element in the sequence
    if (n == 1) :
        max_length = 1
 
    return max_length
 
# Driver code
arr = [ 1, 2, 3, 4, 5 ]
n = len(arr)
print(longestSubSeq(n, arr))
 
# This code is contributed by ihritik

C#




// C# implementation of the approach
using System;
 
class GFG
{
 
    static int MAXN = (int)1e5 + 5;
 
    // Function to return the length of the
    // longest required sub-sequence
    static int longestSubSeq(int n, int[] arr)
    {
        int max_length = 0;
 
        // Create a position array to find
        // where an element is present
        int[] pos = new int[MAXN];
 
        for (int i = 0; i < n; i++)
            pos[arr[i] - 1] = i;
 
        int left = n, right = 0;
 
        for (int i = n - 1, num = 1; i >= 0;
                        i -= 1, num += 1)
        {
 
            // Store the minimum position
            // to the left
            left = Math.Min(left, pos[i]);
 
            // Store the maximum position to
            // the right
            right = Math.Max(right, pos[i]);
 
            // Recompute current maximum
            max_length = Math.Max(max_length,
                    right - left - num + 3);
        }
 
        // Edge case when there is a single
        // element in the sequence
        if (n == 1)
            max_length = 1;
 
        return max_length;
    }
 
    // Driver code
    public static void Main()
    {
        int []arr = { 1, 2, 3, 4, 5 };
        int n = arr.Length;
        Console.WriteLine(longestSubSeq(n, arr));
    }
}
 
// This code is contributed by Ryuga

PHP




<?php
// PHP implementation of the approach
 
$MAXN = 100005;
 
// Function to return the length of the
// longest required sub-sequence
function longestSubSeq($n, $arr)
{
    global $MAXN;
    $max_length = 0;
 
    // Create a position array to find
    // where an element is present
    $pos = array();
 
    for ($i = 0; $i < $n; $i++)
        $pos[$arr[$i] - 1] = $i;
 
    $left = $n;
    $right = 0;
    $num = 1;
    for ($i = $n - 1; $i >= 0 ; $i--, $num++)
    {
         
        // Store the minimum position
        // to the left
        $left = min($left, $pos[$i]);
 
        // Store the maximum position to
        // the right
        $right = max($right, $pos[$i]);
 
        // Recompute current maximum
        $max_length = max($max_length,
                          $right - $left - $num + 3);
    }
     
    // Edge case when there is a single
    // element in the sequence
    if ($n == 1)
        $max_length = 1;
 
    return $max_length;
}
 
// Driver code
$arr = array(1, 2, 3, 4, 5);
$n = sizeof($arr);
echo longestSubSeq($n, $arr);
 
// This code is contributed by ihritik
?>

Javascript




<script>
 
    // JavaScript implementation of the approach
     
    let MAXN = 1e5 + 5;
   
    // Function to return the length of the
    // longest required sub-sequence
    function longestSubSeq(n, arr)
    {
        let max_length = 0;
   
        // Create a position array to find
        // where an element is present
        let pos = new Array(MAXN);
        pos.fill(0);
   
        for (let i = 0; i < n; i++)
            pos[arr[i] - 1] = i;
   
        let left = n, right = 0;
   
        for (let i = n - 1, num = 1; i >= 0;
                        i -= 1, num += 1)
        {
   
            // Store the minimum position
            // to the left
            left = Math.min(left, pos[i]);
   
            // Store the maximum position to
            // the right
            right = Math.max(right, pos[i]);
   
            // Recompute current maximum
            max_length = Math.max(max_length,
                    right - left - num + 3);
        }
   
        // Edge case when there is a single
        // element in the sequence
        if (n == 1)
            max_length = 1;
   
        return max_length;
    }
     
    let arr = [ 1, 2, 3, 4, 5 ];
    let n = arr.length;
    document.write(longestSubSeq(n, arr));
     
</script>

Output: 

2

 

Time Complexity: O(n), where n is the size of the given array.
Auxiliary Space: O(MAXN)


My Personal Notes arrow_drop_up
Last Updated : 16 Nov, 2022
Like Article
Save Article
Similar Reads
Related Tutorials