Skip to content
Related Articles

Related Articles

Longest Subsequence from a numeric String divisible by K
  • Last Updated : 04 Nov, 2020

Given an integer K and a numeric string str, the task is to find the longest subsequence from the given string which is divisible by K.

Examples:

Input: str = “121400”, K = 8
Output: 121400
Explanation:
Since the whole string is divisible by 8, the entire string is the answer.

Input: str: “7675437”, K = 64
Output: 64
Explanation:
The longest subsequence from the string which is divisible by 64, is “64” itself.

 

Approach: The idea is to find all subsequences of the given string and for each subsequence, check if its integer representation is divisible by K or not. Follow the steps below to solve the problem:



  • Traverse the string. For every character encountered, two possibilities exists.
  • Either consider the current character in the subsequence or not. For both the cases, proceed to the next characters of the string and find the longest subsequence that is divisible by K.
  • Compare the longest subsequences obtained above with the current maximum length of longest subsequence and update accordingly.
  • Repeat the above steps for every character of the string and finally, print the maximum length obtained.

Below is the implementation of the above approach.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to if the integer representation
// of the current string is divisible by K
bool isdivisible(string& newstr, long long K)
{
    // Stores the integer
    // representation of the string
    long long num = 0;
 
    for (int i = 0; i < newstr.size(); i++) {
        num = num * 10 + newstr[i] - '0';
    }
 
    // Check if the num is
    // divisible by K
    if (num % K == 0)
        return true;
 
    else
        return false;
}
 
// Function to find the longest subsequence
// which is divisible by K
void findLargestNo(string& str, string& newstr,
                string& ans, int index,
                long long K)
{
 
    if (index == (int)str.length()) {
 
        // If the number is divisible by K
        if (isdivisible(newstr, K)) {
 
            // If current number is the
            // maximum obtained so far
            if ((ans < newstr
                && ans.length() == newstr.length())
                || newstr.length() > ans.length()) {
                ans = newstr;
            }
        }
 
        return;
    }
 
    string x = newstr + str[index];
 
    // Include the digit at current index
    findLargestNo(str, x, ans, index + 1, K);
 
    // Exclude the digit at current index
    findLargestNo(str, newstr, ans, index + 1, K);
}
 
// Driver Code
int main()
{
 
    string str = "121400";
 
    string ans = "", newstr = "";
 
    long long K = 8;
 
    findLargestNo(str, newstr, ans, 0, K);
 
    // Printing the largest number
    // which is divisible by K
    if (ans != "")
        cout << ans << endl;
 
    // If no number is found
    // to be divisible by K
    else
        cout << -1 << endl;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the
// above approach
import java.util.*;
import java.lang.*;
 
class GFG{
     
// Function to if the integer representation
// of the current string is divisible by K
static boolean isdivisible(StringBuilder newstr,
                           long K)
{
     
    // Stores the integer
    // representation of the string
    long num = 0;
   
    for(int i = 0; i < newstr.length(); i++)
    {
        num = num * 10 + newstr.charAt(i) - '0';
    }
   
    // Check if the num is
    // divisible by K
    if (num % K == 0)
        return true;
    else
        return false;
}
   
// Function to find the longest
// subsequence which is divisible
// by K
static void findLargestNo(String str, StringBuilder newstr,
                          StringBuilder ans, int index,
                          long K)
{
    if (index == str.length())
    {
         
        // If the number is divisible by K
        if (isdivisible(newstr, K))
        {
             
            // If current number is the
            // maximum obtained so far
            if ((newstr.toString().compareTo(ans.toString()) > 0 &&
                ans.length() == newstr.length()) ||
                newstr.length() > ans.length())
            {
                ans.setLength(0);
                ans.append(newstr);
            }
        }
        return;
    }
   
    StringBuilder x = new StringBuilder(
        newstr.toString() + str.charAt(index));
   
    // Include the digit at current index
    findLargestNo(str, x, ans, index + 1, K);
   
    // Exclude the digit at current index
    findLargestNo(str, newstr, ans, index + 1, K);
 
// Driver code
public static void main (String[] args)
{
    String str = "121400";
     
    StringBuilder ans = new StringBuilder(),
               newstr = new StringBuilder();
     
     long K = 8;
     
    findLargestNo(str, newstr, ans, 0, K);
     
    // Printing the largest number
    // which is divisible by K
    if (ans.toString() != "")
        System.out.println(ans);
     
    // If no number is found
    // to be divisible by K
    else
        System.out.println(-1);
}
}
 
// This code is contributed by offbeat

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
using System.Text;
 
class GFG{
     
// Function to if the integer representation
// of the current string is divisible by K
static bool isdivisible(StringBuilder newstr,
                        long K)
{
     
    // Stores the integer representation
    // of the string
    long num = 0;
   
    for(int i = 0; i < newstr.Length; i++)
    {
        num = num * 10 + newstr[i] - '0';
    }
     
    // Check if the num is
    // divisible by K
    if (num % K == 0)
        return true;
    else
        return false;
}
   
// Function to find the longest
// subsequence which is divisible
// by K
static void findLargestNo(String str, StringBuilder newstr,
                          StringBuilder ans, int index,
                          long K)
{
    if (index == str.Length)
    {
         
        // If the number is divisible by K
        if (isdivisible(newstr, K))
        {
             
            // If current number is the
            // maximum obtained so far
            if ((newstr.ToString().CompareTo(ans.ToString()) > 0 &&
                ans.Length == newstr.Length) ||
                newstr.Length > ans.Length)
            {
                ans.EnsureCapacity(0);//.SetLength(0);
                ans.Append(newstr);
            }
        }
        return;
    }
   
    StringBuilder x = new StringBuilder(
        newstr.ToString() + str[index]);
         
    // Include the digit at current index
    findLargestNo(str, x, ans, index + 1, K);
   
    // Exclude the digit at current index
    findLargestNo(str, newstr, ans, index + 1, K);
 
// Driver code
public static void Main(String[] args)
{
    String str = "121400";
     
    StringBuilder ans = new StringBuilder(),
               newstr = new StringBuilder();
     
     long K = 8;
     
    findLargestNo(str, newstr, ans, 0, K);
     
    // Printing the largest number
    // which is divisible by K
    if (ans.ToString() != "")
        Console.WriteLine(ans);
     
    // If no number is found
    // to be divisible by K
    else
        Console.WriteLine(-1);
}
}
 
// This code is contributed by gauravrajput1

chevron_right


Output: 

121400








 

Time Complexity: O(N * 2N)
Auxiliary Space: O(1)

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :