Given a binary array a[] and a number k, we need to find length of the longest subsegment of ‘1’s possible by changing at most k ‘0’s.
Examples:
Input : a[] = {1, 0, 0, 1, 1, 0, 1},
k = 1.
Output : 4
Explanation : Here, we should only change 1
zero(0). Maximum possible length we can get
is by changing the 3rd zero in the array,
we get a[] = {1, 0, 0, 1, 1, 1, 1}
Input : a[] = {1, 0, 0, 1, 0, 1, 0, 1, 0, 1},
k = 2.
Output : 5
Output: Here, we can change only 2 zeros.
Maximum possible length we can get is by
changing the 3rd and 4th (or) 4th and 5th
zeros.
We can solve this problem using two pointers technique. Let us take a subarray [l, r] which contains at most k zeroes. Let our left pointer be l and right pointer be r. We always maintain our subsegment [l, r] to contain no more than k zeroes by moving the left pointer l. Check at every step for maximum size (i.e, r-l+1).
C++
#include <iostream>
using namespace std;
int longestSubSeg( int a[], int n, int k)
{
int cnt0 = 0;
int l = 0;
int max_len = 0;
for ( int i = 0; i < n; i++) {
if (a[i] == 0)
cnt0++;
while (cnt0 > k) {
if (a[l] == 0)
cnt0--;
l++;
}
max_len = max(max_len, i - l + 1);
}
return max_len;
}
int main()
{
int a[] = { 1, 0, 0, 1, 0, 1, 0, 1 };
int k = 2;
int n = sizeof (a) / sizeof (a[0]);
cout << longestSubSeg(a, n, k);
return 0;
}
|
Java
import java.io.*;
class GFG {
static int longestSubSeg( int a[], int n,
int k)
{
int cnt0 = 0 ;
int l = 0 ;
int max_len = 0 ;
for ( int i = 0 ; i < n; i++) {
if (a[i] == 0 )
cnt0++;
while (cnt0 > k) {
if (a[l] == 0 )
cnt0--;
l++;
}
max_len = Math.max(max_len, i - l + 1 );
}
return max_len;
}
public static void main (String[] args)
{
int a[] = { 1 , 0 , 0 , 1 , 0 , 1 , 0 , 1 };
int k = 2 ;
int n = a.length;
System.out.println( longestSubSeg(a, n, k));
}
}
|
Python3
def longestSubSeg(a, n, k):
cnt0 = 0
l = 0
max_len = 0 ;
for i in range ( 0 , n):
if a[i] = = 0 :
cnt0 + = 1
while (cnt0 > k):
if a[l] = = 0 :
cnt0 - = 1
l + = 1
max_len = max (max_len, i - l + 1 );
return max_len
a = [ 1 , 0 , 0 , 1 , 0 , 1 , 0 , 1 ]
k = 2
n = len (a)
print (longestSubSeg(a, n, k))
|
C#
using System;
class GFG {
static int longestSubSeg( int [] a, int n,
int k)
{
int cnt0 = 0;
int l = 0;
int max_len = 0;
for ( int i = 0; i < n; i++)
{
if (a[i] == 0)
cnt0++;
while (cnt0 > k) {
if (a[l] == 0)
cnt0--;
l++;
}
max_len = Math.Max(max_len, i - l + 1);
}
return max_len;
}
public static void Main()
{
int [] a = { 1, 0, 0, 1, 0, 1, 0, 1 };
int k = 2;
int n = a.Length;
Console.WriteLine(longestSubSeg(a, n, k));
}
}
|
PHP
<?php
function longestSubSeg( $a , $n , $k )
{
$cnt0 = 0;
$l = 0;
$max_len = 0;
for ( $i = 0; $i < $n ; $i ++)
{
if ( $a [ $i ] == 0)
$cnt0 ++;
while ( $cnt0 > $k )
{
if ( $a [ $l ] == 0)
$cnt0 --;
$l ++;
}
$max_len = max( $max_len , $i - $l + 1);
}
return $max_len ;
}
$a = array (1, 0, 0, 1, 0, 1, 0, 1);
$k = 2;
$n = count ( $a );
echo longestSubSeg( $a , $n , $k );
?>
|
Javascript
<script>
function longestSubSeg(a, n, k)
{
let cnt0 = 0;
let l = 0;
let max_len = 0;
for (let i = 0; i < n; i++)
{
if (a[i] == 0)
cnt0++;
while (cnt0 > k) {
if (a[l] == 0)
cnt0--;
l++;
}
max_len = Math.max(max_len, i - l + 1);
}
return max_len;
}
let a = [ 1, 0, 0, 1, 0, 1, 0, 1 ];
let k = 2;
let n = a.length;
document.write(longestSubSeg(a, n, k));
</script>
|
There is another O(n) approach, where we can keep a track of number of 1s will be discarded if a 0 is not converted to one.
As we move right and encounter more 0s that what is permitted, we reduce one 0 to the left and at that time we reduce the count of ones by the 1s adjacent to the left-most zero being discarded.
C++
#include <bits/stdc++.h>
using namespace std;
int solve( int binaryList[], int n, int conversionLimit)
{
vector< int > listOfOnesCovered;
int oneCount = 0;
for ( int i = 0; i < n; i++)
{
int number = binaryList[i];
if (number == 0)
{
listOfOnesCovered.push_back(
oneCount > 0 ? oneCount + 1 : 1);
oneCount = 0;
}
else
{
++oneCount;
}
}
int totalOnes = 0;
int maxOnes = 0;
int zeroCount = 0;
for ( int i = 0; i < n; i++)
{
int integer = binaryList[i];
++totalOnes;
if (integer == 0)
{
if (zeroCount >= conversionLimit)
{
totalOnes -= listOfOnesCovered[zeroCount - conversionLimit];
}
++zeroCount;
}
maxOnes = max(totalOnes, maxOnes);
}
return maxOnes;
}
int main()
{
int binaryList[] = {1, 0, 0, 0, 0, 1, 1, 1};
int n = sizeof (binaryList) / sizeof (binaryList[0]);
int conversionLimit = 2;
cout << solve(binaryList,n, conversionLimit) << endl;
}
|
Java
import java.io.*;
import java.util.ArrayList;
import java.util.List;
public class Solution {
public int solve( int [] binaryList, int conversionLimit) {
List<Integer> listOfOnesCovered = new ArrayList<>();
int oneCount = 0 ;
for ( int number : binaryList) {
if (number == 0 ) {
listOfOnesCovered.add(oneCount > 0 ? oneCount + 1 : 1 );
oneCount = 0 ;
} else {
++oneCount;
}
}
int totalOnes = 0 ;
int maxOnes = 0 ;
int zeroCount = 0 ;
for ( int integer : binaryList) {
++totalOnes;
if (integer == 0 ) {
if (zeroCount >= conversionLimit) {
totalOnes -= listOfOnesCovered.get(zeroCount - conversionLimit);
}
++zeroCount;
}
maxOnes = Math.max(totalOnes, maxOnes);
}
return maxOnes;
}
public static void main (String[] args){
System.out.println(
new Solution().solve( new int []{ 1 , 0 , 0 , 0 , 0 , 1 , 1 , 1 }, 2 )
);
}
}
|
Python3
import math
class Solution :
def solve( self , binaryList, conversionLimit) :
listOfOnesCovered = []
oneCount = 0
for number in binaryList :
if (number = = 0 ) :
listOfOnesCovered.append(oneCount + 1 if oneCount > 0 else 1 )
oneCount = 0
else :
oneCount + = 1
totalOnes = 0
maxOnes = 0
zeroCount = 0
for integer in binaryList :
totalOnes + = 1
if (integer = = 0 ) :
if (zeroCount > = conversionLimit) :
totalOnes - = listOfOnesCovered[zeroCount - conversionLimit]
zeroCount + = 1
maxOnes = max (totalOnes,maxOnes)
return maxOnes
@staticmethod
def main( args) :
print (Solution().solve([ 1 , 0 , 0 , 0 , 0 , 1 , 1 , 1 ], 2 ))
if __name__ = = "__main__" :
Solution.main([])
|
C#
using System;
using System.Collections;
public class Solution {
public int solve( int [] binaryList, int conversionLimit)
{
ArrayList listOfOnesCovered = new ArrayList();
int oneCount = 0;
foreach ( int number in binaryList)
{
if (number == 0) {
listOfOnesCovered.Add(
oneCount > 0 ? oneCount + 1 : 1);
oneCount = 0;
}
else {
++oneCount;
}
}
int totalOnes = 0;
int maxOnes = 0;
int zeroCount = 0;
foreach ( int integer in binaryList)
{
++totalOnes;
if (integer == 0) {
if (zeroCount >= conversionLimit) {
totalOnes -= ( int )listOfOnesCovered
[zeroCount - conversionLimit];
}
++zeroCount;
}
maxOnes = Math.Max(totalOnes, maxOnes);
}
return maxOnes;
}
static public void Main()
{
Solution s = new Solution();
Console.WriteLine(s.solve(
new int [] { 1, 0, 0, 0, 0, 1, 1, 1 }, 2));
}
}
|
Javascript
const solve = (binaryList, n, conversionLimit) => {
const listOfOnesCovered = [];
let oneCount = 0;
for (let i = 0; i < n; i++) {
const number = binaryList[i];
if (number === 0) {
listOfOnesCovered.push(oneCount > 0 ? oneCount + 1 : 1);
oneCount = 0;
} else {
oneCount++;
}
}
let totalOnes = 0;
let maxOnes = 0;
let zeroCount = 0;
for (let i = 0; i < n; i++) {
const integer = binaryList[i];
totalOnes++;
if (integer === 0) {
if (zeroCount >= conversionLimit) {
totalOnes -= listOfOnesCovered[zeroCount - conversionLimit];
}
zeroCount++;
}
maxOnes = Math.max(totalOnes, maxOnes);
}
return maxOnes;
};
const binaryList = [1, 0, 0, 0, 0, 1, 1, 1];
const n = binaryList.length;
const conversionLimit = 2;
console.log(solve(binaryList, n, conversionLimit));
|
Please Login to comment...