Given an array arr[] of N integers and an integer K, our task is to find the length of the longest subarray such that for all possible pairs in the subarray absolute difference between elements is less than or equal to K.
Examples:
Input: arr[] = {2, 4, 5, 5, 5, 3, 1}, K = 0
Output: 3
Explanation:
The possible subarray with difference in elements as 0 is {5, 5, 5} whose length is 3. Hence the output is 3.Input: arr[] = {1, 2, 3, 6, 7}, K = 2
Output: 3
Explanation:
The possible subarray with difference in elements at most 2 is {1, 2, 3} whose length is 3. Hence the output is 3.
Naive Approach:
To solve the problem mentioned above the naive method is to use The Brute Force approach that is to generate all the possible subarray of the given array and check if the difference between the maximum and minimum element of the subarray is at most K or not. If it is, then update the length of the current subarray with the maximum length. Print the maximum length of the subarray after all the operations.
Below is the implementation of the above approach:
C++
// C++ implementation to find the Longest subarray // of the given array with absolute difference between // elements less than or equal to integer K #include <bits/stdc++.h> using namespace std; int computeLongestSubarray( int arr[], int k, int n) { // maxLength is 1 because k >= 0, // a single element, subarray will always // have absolute difference zero int maxLength = 1; // Check for all possible subarrays for ( int i = 0; i < n; i++) { // Initalization of minimum & // maximum of current subarray int minOfSub = arr[i]; int maxOfSub = arr[i]; for ( int j = i + 1; j < n; j++) { // Update the values for minimum & maximum if (arr[j] > maxOfSub) maxOfSub = arr[j]; if (arr[j] < minOfSub) minOfSub = arr[j]; // Check if current subarray satisfies // the given condition if ((maxOfSub - minOfSub) <= k) { int currLength = j - i + 1; // Update the value for maxLength if (maxLength < currLength) maxLength = currLength; } } } // Return the final result return maxLength; } // Driver Code int main() { int arr[] = { 1, 2, 3, 6, 7 }; int k = 2; int n = sizeof (arr) / sizeof (arr[0]); int maxLength = computeLongestSubarray(arr, k, n); cout << (maxLength); } // This code is contributed by chitranayal |
Java
// Java implementation to find the Longest subarray // of the given array with absolute difference between // elements less than or equal to integer K class GFG { public static int computeLongestSubarray( int arr[], int k) { // maxLength is 1 because k >= 0, // a single element, subarray will always // have absolute difference zero int maxLength = 1 ; // Check for all possible subarrays for ( int i = 0 ; i < arr.length; i++) { // Initalization of minimum & // maximum of current subarray int minOfSub = arr[i]; int maxOfSub = arr[i]; for ( int j = i + 1 ; j < arr.length; j++) { // Update the values for minimum & maximum if (arr[j] > maxOfSub) maxOfSub = arr[j]; if (arr[j] < minOfSub) minOfSub = arr[j]; // Check if current subarray satisfies // the given condition if ((maxOfSub - minOfSub) <= k) { int currLength = j - i + 1 ; // Update the value for maxLength if (maxLength < currLength) maxLength = currLength; } } } // Return the final result return maxLength; } // Driver Code public static void main(String[] args) { int arr[] = { 1 , 2 , 3 , 6 , 7 }; int k = 2 ; int maxLength = computeLongestSubarray(arr, k); System.out.println(maxLength); } } |
Python3
# Python3 implementation to find the # Longest subarray of the given array # with absolute difference between # elements less than or equal to integer K def computeLongestSubarray (arr, k, n): # maxLength is 1 because k >= 0, # a single element, subarray will always # have absolute difference zero maxLength = 1 # Check for all possible subarrays for i in range (n): # Initialization of minimum & # maximum of current subarray minOfSub = arr[i] maxOfSub = arr[i] for j in range (i + 1 , n): # Update the values for # minimum & maximum if (arr[j] > maxOfSub): maxOfSub = arr[j] if (arr[j] < minOfSub): minOfSub = arr[j] # Check if current subarray # satisfies the given condition if ((maxOfSub - minOfSub) < = k): currLength = j - i + 1 # Update the value for maxLength if (maxLength < currLength): maxLength = currLength # Return the final result return maxLength # Driver Code if __name__ = = '__main__' : arr = [ 1 , 2 , 3 , 6 , 7 ] k = 2 n = len (arr) maxLength = computeLongestSubarray(arr, k, n) print (maxLength) # This code is contributed by himanshu77 |
C#
// C# implementation to find the longest subarray // of the given array with absolute difference between // elements less than or equal to integer K using System; class GFG { public static int computelongestSubarray( int []arr, int k) { // maxLength is 1 because k >= 0, // a single element, subarray will always // have absolute difference zero int maxLength = 1; // Check for all possible subarrays for ( int i = 0; i < arr.Length; i++) { // Initalization of minimum & // maximum of current subarray int minOfSub = arr[i]; int maxOfSub = arr[i]; for ( int j = i + 1; j < arr.Length; j++) { // Update the values for minimum & maximum if (arr[j] > maxOfSub) maxOfSub = arr[j]; if (arr[j] < minOfSub) minOfSub = arr[j]; // Check if current subarray satisfies // the given condition if ((maxOfSub - minOfSub) <= k) { int currLength = j - i + 1; // Update the value for maxLength if (maxLength < currLength) maxLength = currLength; } } } // Return the readonly result return maxLength; } // Driver Code public static void Main(String[] args) { int []arr = { 1, 2, 3, 6, 7 }; int k = 2; int maxLength = computelongestSubarray(arr, k); Console.WriteLine(maxLength); } } // This code is contributed by shikhasingrajput |
3
Time Complexity: O(n2)
Efficient Approach:
To optimize the above approach the idea is to use Heap Data Structure. Initialize a minHeap that will store the indices of the current subarray such that the elements are in ascending order, where the smallest appears at the top and a maxHeap that will store the indices of the current subarray such that the elements are in descending order, where the largest element appears at the top. Then iterate over the entire array and for each iteration check if:
- All the subarray elements satisfy the condition of maxOfSub-minOfSub <= k, then we compare maxLength so far to the length of current subarray and update maxLength to maximum of either maxLength or current subarray length.
- If the condition is not satisfied then increase the beginning pointer for subarray by 1 and remove all indices from minHeap and maxHeap which are not included in the new subarray.
- After each iteration we increase our subarray length by incrementing the end pointer.
Below is the implementation of the above approach:
Java
// Java implementation to find the Longest // subarray of the given array with absolute // difference between elements less than or equal // to integer K using Heaps import java.util.*; class GFG { public static int computeLongestSubarray( int arr[], int k) { // Stores the maximum length subarray so far int maxLength = 0 ; Deque<Integer> maxHeap = new LinkedList<>(); Deque<Integer> minHeap = new LinkedList<>(); // Marks to the beginning and end // pointer for current subarray int beg = 0 , end = 0 ; while (end < arr.length) { // Stores the current element being // added to the subarray int currEl = arr[end]; // Remove indices of all elements smaller // than or equal to current from maxHeap while (maxHeap.size() > 0 && arr[maxHeap.peekLast()] <= currEl) maxHeap.removeLast(); // Add current element's index to maxHeap maxHeap.addLast(end); // Remove indices of all elements larger // than or equal to current from minHeap while (minHeap.size() > 0 && arr[minHeap.peekLast()] >= currEl) minHeap.removeLast(); // Add current element's index to minHeap minHeap.addLast(end); // Index of maximum of current subarray int maxOfSub = arr[maxHeap.peekFirst()]; // Index of minimum of current subarray int minOfSub = arr[minHeap.peekFirst()]; // check if the largest possible difference // between a pair of elements <= k if (maxOfSub - minOfSub <= k) { // Length of current subarray int currLength = end - beg + 1 ; // Update maxLength if (maxLength < currLength) maxLength = currLength; } else { // If current subarray doesn't satisy // the condition then remove the starting // element from subarray that satisy // increment the beginning pointer beg++; // Remove elements from heaps that // are not in the subarray anymore while (minHeap.size() > 0 && minHeap.peekFirst() < beg) minHeap.removeFirst(); while (maxHeap.size() > 0 && maxHeap.peekFirst() < beg) maxHeap.removeFirst(); } end++; } // Return the final answer return maxLength; } // Driver code public static void main(String[] args) { int arr[] = { 1 , 2 , 3 , 6 , 7 }; int k = 2 ; int maxLength = computeLongestSubarray(arr, k); System.out.println(maxLength); } } |
Python3
# Python3 implementation to find the Longest # subarray of the given array with absolute # difference between elements less than or equal # to integer K using Heaps from collections import deque def computeLongestSubarray(arr, k): # Stores the maximum length subarray so far maxLength = 0 maxHeap = [] minHeap = [] # Marks to the beginning and end # pointer for current subarray beg = 0 end = 0 while (end < len (arr)): # print(end) # Stores the current element being # added to the subarray currEl = arr[end] # Remove indices of all elements smaller # than or equal to current from maxHeap while ( len (maxHeap) > 0 and arr[maxHeap[ - 1 ]] < = currEl): del maxHeap[ - 1 ] # Add current element's index to maxHeap maxHeap.append(end) # Remove indices of all elements larger # than or equal to current from minHeap while ( len (minHeap) > 0 and arr[minHeap[ - 1 ]] > = currEl): # print(minHeap[-1]) del minHeap[ - 1 ] # Add current element's index to minHeap minHeap.append(end) # Index of maximum of current subarray maxOfSub = arr[maxHeap[ 0 ]] # Index of minimum of current subarray minOfSub = arr[minHeap[ 0 ]] # check if the largest possible difference # between a pair of elements <= k if (maxOfSub - minOfSub < = k): # Length of current subarray currLength = end - beg + 1 # Update maxLength if (maxLength < currLength): maxLength = currLength else : # If current subarray doesn't satisy # the condition then remove the starting # element from subarray that satisy # increment the beginning pointer beg + = 1 # Remove elements from heaps that # are not in the subarray anymore while ( len (minHeap) > 0 and minHeap[ 0 ] < beg): del minHeap[ 0 ] while ( len (maxHeap) > 0 and maxHeap[ 0 ] < beg): del maxHeap[ 0 ] end + = 1 # Return the final answer return maxLength # Driver code if __name__ = = '__main__' : arr = [ 1 , 2 , 3 , 6 , 7 ] k = 2 maxLength = computeLongestSubarray(arr, k) print (maxLength) # This code is contributed by mohit kumar 29 |
3
Time Complexity: O(n) because every element of the array is added and removed from the heaps only once.