Longest subarray having sum K | Set 2

Given an array arr[] of size N containing integers. The task is to find the length of the longest sub-array having sum equal to the given value K.
Examples: 

Input: arr[] = {2, 3, 4, 2, 1, 1}, K = 10 
Output:
Explanation: 
The subarray {3, 4, 2, 1} gives summation as 10.

Input: arr[] = {6, 8, 14, 9, 4, 11, 10}, K = 13 
Output:
Explanation: 
The subarray {9, 4} gives summation as 13. 
 

Naive Approach: Please refer to this article.
Time Complexity: O(N2) 
Auxiliary Space: O(1)

Efficient Approach: The idea is to use Binary Search to find the subarray of maximum length having sum K. Below are the steps:

  1. Create a prefix sum array(say pref[]) from the given array arr[].
  2. For each element in the prefix array pref[] do Binary Search: 
    • Initialize ans, start and end variable as -1, 0 and N respectively.
    • Find the middle index(say mid).
    • If pref[mid] – val ≤ K then update the start variable to mid + 1 and ans to mid.
    • Else update the end variable to mid – 1.
  3. Return the value of ans from the above binary search.
  4. If current subarray length is less than (ans – i), then update the maximum length to (ans – i).

Below is the implementation of the above approach:



C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
  
// To store the prefix sum array
vector<int> v;
  
// Function for searching the
// lower bound of the subarray
int bin(int val, int k, int n)
{
    int lo = 0;
    int hi = n;
    int mid;
    int ans = -1;
  
    // Iterate until low less
    // than equal to high
    while (lo <= hi) {
        mid = lo + (hi - lo) / 2;
  
        // For each mid finding sum
        // of sub array less than
        // or equal to k
        if (v[mid] - val <= k) {
            lo = mid + 1;
            ans = mid;
        }
        else
            hi = mid - 1;
    }
  
    // Return the final answer
    return ans;
}
  
// Function to find the length of
// subarray with sum K
void findSubarraySumK(int arr[],
                      int N, int K)
{
  
    // Initialize sum to 0
    int sum = 0;
    v.push_back(0);
  
    // Push the prefix sum of the
    // array arr[] in prefix[]
    for (int i = 0; i < N; i++) {
  
        sum += arr[i];
        v.push_back(sum);
    }
  
    int l = 0, ans = 0, r;
  
    for (int i = 0; i < K; i++) {
  
        // Search r for each i
        r = bin(v[i], K, N);
  
        // Update ans
        ans = max(ans, r - i);
    }
  
    // Print the length of subarray
    // found in the array
    cout << ans;
}
  
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 6, 8, 14, 9, 4, 11, 10 };
  
    int N = sizeof(arr) / sizeof(arr[0]);
  
    // Given sum K
    int K = 13;
  
    // Function Call
    findSubarraySumK(arr, N, K);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.util.*;
  
class GFG{
  
// To store the prefix sum array
static Vector<Integer> v = new Vector<Integer>();
  
// Function for searching the
// lower bound of the subarray
static int bin(int val, int k, int n)
{
    int lo = 0;
    int hi = n;
    int mid;
    int ans = -1;
  
    // Iterate until low less
    // than equal to high
    while (lo <= hi) 
    {
        mid = lo + (hi - lo) / 2;
  
        // For each mid finding sum
        // of sub array less than
        // or equal to k
        if (v.get(mid) - val <= k) 
        {
            lo = mid + 1;
            ans = mid;
        }
        else
            hi = mid - 1;
    }
  
    // Return the final answer
    return ans;
}
  
// Function to find the length of
// subarray with sum K
static void findSubarraySumK(int arr[],
                             int N, int K)
{
  
    // Initialize sum to 0
    int sum = 0;
    v.add(0);
  
    // Push the prefix sum of the
    // array arr[] in prefix[]
    for(int i = 0; i < N; i++) 
    {
        sum += arr[i];
        v.add(sum);
    }
  
    int l = 0, ans = 0, r;
  
    for(int i = 0; i < v.size(); i++) 
    {
          
        // Search r for each i
        r = bin(v.get(i), K, N);
  
        // Update ans
        ans = Math.max(ans, r - i);
    }
  
    // Print the length of subarray
    // found in the array
    System.out.print(ans);
}
  
// Driver Code
public static void main(String[] args)
{
      
    // Given array arr[]
    int arr[] = { 6, 8, 14, 9, 4, 11, 10 };
  
    int N = arr.length;
  
    // Given sum K
    int K = 13;
  
    // Function call
    findSubarraySumK(arr, N, K);
}
}
  
// This code is contributed by gauravrajput1

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
using System.Collections.Generic;
  
class GFG{
  
// To store the prefix sum array
static List<int> v = new List<int>();
  
// Function for searching the
// lower bound of the subarray
static int bin(int val, int k, int n)
{
    int lo = 0;
    int hi = n;
    int mid;
    int ans = -1;
  
    // Iterate until low less
    // than equal to high
    while (lo <= hi) 
    {
        mid = lo + (hi - lo) / 2;
  
        // For each mid finding sum
        // of sub array less than
        // or equal to k
        if (v[mid] - val <= k) 
        {
            lo = mid + 1;
            ans = mid;
        }
        else
            hi = mid - 1;
    }
  
    // Return the final answer
    return ans;
}
  
// Function to find the length of
// subarray with sum K
static void findSubarraySumK(int []arr,
                             int N, int K)
{
  
    // Initialize sum to 0
    int sum = 0;
    v.Add(0);
  
    // Push the prefix sum of the
    // array []arr in prefix[]
    for(int i = 0; i < N; i++) 
    {
        sum += arr[i];
        v.Add(sum);
    }
  
    int ans = 0, r;
  
    for(int i = 0; i < v.Count; i++) 
    {
          
        // Search r for each i
        r = bin(v[i], K, N);
  
        // Update ans
        ans = Math.Max(ans, r - i);
    }
  
    // Print the length of subarray
    // found in the array
    Console.Write(ans);
}
  
// Driver Code
public static void Main(String[] args)
{
      
    // Given array []arr
    int []arr = { 6, 8, 14, 9, 4, 11, 10 };
  
    int N = arr.Length;
  
    // Given sum K
    int K = 13;
  
    // Function call
    findSubarraySumK(arr, N, K);
}
}
  
// This code is contributed by gauravrajput1

chevron_right


Output: 

2

Time Complexity: O(N*log2N) 
Auxiliary Space: O(N)
Efficient approach: For a O(N) approach, please refer to the efficient approach of this article.
 

competitive-programming-img




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : GauravRajput1