Given an array of size n containing 0’s and 1’s only. The problem is to find the length of the longest subarray having count of 1’s one more than count of 0’s.
Examples:
Input : arr = {0, 1, 1, 0, 0, 1} Output : 5 From index 1 to 5. Input : arr[] = {1, 0, 0, 1, 0} Output : 1
Approach: Following are the steps:
- Consider all the 0’s in the array as ‘-1’.
- Initialize sum = 0 and maxLen = 0.
- Create a hash table having (sum, index) tuples.
- For i = 0 to n-1, perform the following steps:
- If arr[i] is ‘0’ accumulate ‘-1’ to sum else accumulate ‘1’ to sum.
- If sum == 1, update maxLen = i+1.
- Else check whether sum is present in the hash table or not. If not present, then add it to the hash table as (sum, i) pair.
- Check if (sum-1) is present in the hash table or not. if present, then obtain index of (sum-1) from the hash table as index. Now check if maxLen is less than (i-index), then update maxLen = (i-index).
- Return maxLen.
// C++ implementation to find the length of // longest subarray having count of 1's one // more than count of 0's #include <bits/stdc++.h> using namespace std;
// function to find the length of longest // subarray having count of 1's one more // than count of 0's int lenOfLongSubarr( int arr[], int n)
{ // unordered_map 'um' implemented as
// hash table
unordered_map< int , int > um;
int sum = 0, maxLen = 0;
// traverse the given array
for ( int i = 0; i < n; i++) {
// consider '0' as '-1'
sum += arr[i] == 0 ? -1 : 1;
// when subarray starts form index '0'
if (sum == 1)
maxLen = i + 1;
// make an entry for 'sum' if it is
// not present in 'um'
else if (um.find(sum) == um.end())
um[sum] = i;
// check if 'sum-1' is present in 'um'
// or not
if (um.find(sum - 1) != um.end()) {
// update maxLength
if (maxLen < (i - um[sum - 1]))
maxLen = i - um[sum - 1];
}
}
// required maximum length
return maxLen;
} // Driver program to test above int main()
{ int arr[] = { 0, 1, 1, 0, 0, 1 };
int n = sizeof (arr) / sizeof (arr[0]);
cout << "Length = "
<< lenOfLongSubarr(arr, n);
return 0;
} |
// Java implementation to find the length of // longest subarray having count of 1's one // more than count of 0's import java.util.*;
class GFG
{ // function to find the length of longest // subarray having count of 1's one more // than count of 0's static int lenOfLongSubarr( int arr[], int n)
{ // unordered_map 'um' implemented as
// hash table
HashMap<Integer,
Integer> um = new HashMap<Integer,
Integer>();
int sum = 0 , maxLen = 0 ;
// traverse the given array
for ( int i = 0 ; i < n; i++)
{
// consider '0' as '-1'
sum += arr[i] == 0 ? - 1 : 1 ;
// when subarray starts form index '0'
if (sum == 1 )
maxLen = i + 1 ;
// make an entry for 'sum' if it is
// not present in 'um'
else if (!um.containsKey(sum))
um. put(sum, i);
// check if 'sum-1' is present in 'um'
// or not
if (um.containsKey(sum - 1 ))
{
// update maxLength
if (maxLen < (i - um.get(sum - 1 )))
maxLen = i - um.get(sum - 1 );
}
}
// required maximum length
return maxLen;
} // Driver Code public static void main(String[] args)
{ int arr[] = { 0 , 1 , 1 , 0 , 0 , 1 };
int n = arr.length;
System.out.println( "Length = " +
lenOfLongSubarr(arr, n));
} } // This code is contributed by Princi Singh |
# Python 3 implementation to find the length of # longest subarray having count of 1's one # more than count of 0's # function to find the length of longest # subarray having count of 1's one more # than count of 0's def lenOfLongSubarr(arr, n):
# unordered_map 'um' implemented as
# hash table
um = {i: 0 for i in range ( 10 )}
sum = 0
maxLen = 0
# traverse the given array
for i in range (n):
# consider '0' as '-1'
if arr[i] = = 0 :
sum + = - 1
else :
sum + = 1
# when subarray starts form index '0'
if ( sum = = 1 ):
maxLen = i + 1
# make an entry for 'sum' if it is
# not present in 'um'
elif ( sum not in um):
um[ sum ] = i
# check if 'sum-1' is present in 'um'
# or not
if (( sum - 1 ) in um):
# update maxLength
if (maxLen < (i - um[ sum - 1 ])):
maxLen = i - um[ sum - 1 ]
# required maximum length
return maxLen
# Driver code if __name__ = = '__main__' :
arr = [ 0 , 1 , 1 , 0 , 0 , 1 ]
n = len (arr)
print ( "Length =" ,lenOfLongSubarr(arr, n))
# This code is contributed by # Surendra_Gangwar |
// C# implementation to find the length of // longest subarray having count of 1's one // more than count of 0's using System;
using System.Collections.Generic;
class GFG
{ // function to find the length of longest // subarray having count of 1's one more // than count of 0's static int lenOfLongSubarr( int []arr, int n)
{ // unordered_map 'um' implemented as
// hash table
Dictionary< int ,
int > um = new Dictionary< int ,
int >();
int sum = 0, maxLen = 0;
// traverse the given array
for ( int i = 0; i < n; i++)
{
// consider '0' as '-1'
sum += arr[i] == 0 ? -1 : 1;
// when subarray starts form index '0'
if (sum == 1)
maxLen = i + 1;
// make an entry for 'sum' if it is
// not present in 'um'
else if (!um.ContainsKey(sum))
um.Add(sum, i);
// check if 'sum-1' is present in 'um'
// or not
if (um.ContainsKey(sum - 1))
{
// update maxLength
if (maxLen < (i - um[sum - 1]))
maxLen = i - um[sum - 1];
}
}
// required maximum length
return maxLen;
} // Driver Code public static void Main(String[] args)
{ int []arr = { 0, 1, 1, 0, 0, 1 };
int n = arr.Length;
Console.WriteLine( "Length = " +
lenOfLongSubarr(arr, n));
} } // This code is contributed by Rajput-Ji |
Output:
Length = 5
Time Complexity: O(n)
Auxiliary Space: O(n)
This article is contributed by Ayush Jauhari. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.