# Longest string in non-decreasing order of ASCII code and in arithmetic progression

Given a non-empty string S of uppercase alphabets of length L and the task is to find the longest string from the given string with characters arranged in descending order of their ASCII code and in arithmetic progression such that the common difference should be as low as possible and the characters of the string to be of higher ASCII value.
Note : The string contains minimum three different characters.

Examples:

Input : S = “ABCPQR”
Output : “RQP”
Two strings of maximum length are possible – “CBA” and “RPQ”. But since
the string should be of higher ASCII value hence, the output is “RPQ”.

Output : “JGDA”

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach : The maximum possible common difference for minimum 3 characters to be in arithmetic progression is 12. Hence, precompute all characters that are present in the string using a hashmap and then iterate from the character having maximum ASCII value i.e. ‘Z’ to the character having minimum ASCII value i.e. ‘A’. If the current character exists in the given string, consider it as the starting character of the arithmetic progression sequence and iterate again over all possible common differences i.e. from 1 to 12. Check for every current common difference that if the character exists in the given string, increment the current length of the longest required string. Now, there exist two cases when maximum length ans minimum common difference needs to be updated.

1. When the current length is more than the maximum length.
2. When the current length is equal to the maximum length and current common difference is less than the minimum common difference, then common difference needs to be updated.

Also, at every updation of these two parameters, starting character of the string or arithmetic progression sequence must also be updated.

Below is the implementation of above approach:

 `// C++ Program to find the longest string ` `// with characters arranged in non-decreasing ` `// order of ASCII and in arithmetic progression ` `#include ` `using` `namespace` `std; ` ` `  `// Function to find the longest String ` `string findLongestString(string S) ` `{ ` `    ``// Stores the maximum length of required string ` `    ``int` `maxLen = 0; ` ` `  `    ``// Stores the optimal starting character of ` `    ``// required string or arithmetic progression sequence ` `    ``int` `bestStartChar; ` ` `  `    ``// Stores the optimal i.e. minimum common difference ` `    ``// of required string ` `    ``int` `minCommonDifference = INT_MAX; ` ` `  `    ``unordered_map<``char``, ``bool``> mp; ` `    ``for` `(``int` `i = 0; i < S.size(); i++) ` `        ``mp[S[i]] = ``true``; ` ` `  `    ``// Iterate over the loop in non decreasing order ` `    ``for` `(``int` `startChar = ``'Z'``; startChar > ``'A'``; startChar--) { ` ` `  `        ``// Process further only if current character ` `        ``// exists in the given string ` `        ``if` `(mp[startChar]) { ` ` `  `            ``// Iterate over all possible common differences ` `            ``// of AP sequence and update maxLen accordingly ` `            ``for` `(``int` `currDiff = 1; currDiff <= 12; currDiff++) { ` `                ``int` `currLen = 1; ` ` `  `                ``// Iterate over the characters at any interval ` `                ``// of current common difference ` `                ``for` `(``int` `ch = startChar - currDiff; ch >= ``'A'``; ` `                     ``ch -= currDiff) { ` `                    ``if` `(mp[ch]) ` `                        ``currLen++; ` `                    ``else` `                        ``break``; ` `                ``} ` ` `  `                ``// Update maxLen and other parameters if the currLen ` `                ``// is greater than maxLen or if the current ` `                ``// difference is smaller than minCommonDifference ` `                ``if` `(currLen > maxLen || (currLen == maxLen ` `                                         ``&& currDiff < minCommonDifference)) { ` `                    ``minCommonDifference = currDiff; ` `                    ``maxLen = currLen; ` `                    ``bestStartChar = startChar; ` `                ``} ` `            ``} ` `        ``} ` `    ``} ` `    ``string longestString = ``""``; ` ` `  `    ``// Store the string in decreasing order of ` `    ``// arithmetic progression ` `    ``for` `(``int` `i = bestStartChar; ` `         ``i >= (bestStartChar - (maxLen - 1) * minCommonDifference); ` `         ``i -= minCommonDifference) ` `        ``longestString += ``char``(i); ` ` `  `    ``return` `longestString; ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``string S = ``"ADGJPRT"``; ` `    ``cout << findLongestString(S) << endl; ` `    ``return` `0; ` `} `

 `// Java Program to find the longest string ` `// with characters arranged in non-decreasing ` `// order of ASCII and in arithmetic progression ` `import` `java.util.*; ` `import` `java.lang.*; ` `  `  `public` `class` `GFG { ` `    ``// Function to find the longest String ` `    ``static` `String findLongestString(String S) ` `    ``{ ` `        ``// Stores the maximum length of required string ` `        ``int` `maxLen = ``0``; ` `     `  `        ``// Stores the optimal starting character of ` `        ``// required string or arithmetic progression sequence ` `        ``int` `bestStartChar = ``0``; ` `     `  `        ``// Stores the optimal i.e. minimum common difference ` `        ``// of required string ` `        ``int` `minCommonDifference = Integer.MAX_VALUE; ` `     `  `        ``HashMap hm = ``new` `HashMap ` `                                ``(); ` `        ``for` `(``int` `i = ``0``; i < S.length(); i++) ` `            ``hm.put(S.charAt(i), ``true``); ` `     `  `        ``// Iterate over the loop in non decreasing order ` `        ``for` `(``int` `startChar = ``'Z'``; startChar > ``'A'``; startChar--) { ` `     `  `            ``// Process further only if current character ` `            ``// exists in the given string ` `            ``if` `(hm.containsKey((``char``)startChar)) { ` `     `  `                ``// Iterate over all possible common differences ` `                ``// of AP sequence and update maxLen accordingly ` `                ``for` `(``int` `currDiff = ``1``; currDiff <= ``12``; currDiff++) { ` `                    ``int` `currLen = ``1``; ` `     `  `                    ``// Iterate over the characters at any interval ` `                    ``// of current common difference ` `                    ``for` `(``int` `ch = startChar - currDiff; ch >= ``'A'``; ` `                        ``ch -= currDiff) { ` `                        ``if` `(hm.containsKey((``char``)ch)) ` `                            ``currLen++; ` `                        ``else` `                            ``break``; ` `                    ``} ` `     `  `                    ``// Update maxLen and other parameters if the currLen ` `                    ``// is greater than maxLen or if the current ` `                    ``// difference is smaller than minCommonDifference ` `                    ``if` `(currLen > maxLen || (currLen == maxLen ` `                                 ``&& currDiff < minCommonDifference)) { ` `                        ``minCommonDifference = currDiff; ` `                        ``maxLen = currLen; ` `                        ``bestStartChar = startChar; ` `                    ``} ` `                ``} ` `            ``} ` `        ``} ` `        ``String longestString = ``""``; ` `     `  `        ``// Store the string in decreasing order of ` `        ``// arithmetic progression ` `        ``char` `ch; ` `        ``for` `(``int` `i = bestStartChar;  ` `         ``i >= (bestStartChar - (maxLen - ``1``) * minCommonDifference);  ` `         ``i -= minCommonDifference) ` `        ``{ ` `            ``ch = (``char``)i; ` `            ``longestString += ch; ` `        ``} ` `        ``return` `longestString; ` `    ``} ` `  `  `    ``// Driver Code ` `    ``public` `static` `void` `main(String args[]) ` `    ``{ ` `        ``String S = ``"ADGJPRT"``; ` `        ``System.out.println(findLongestString(S)); ` `    ``} ` `} ` `// This code is contributed by Nishant Tanwar `

 `// C# Program to find the longest string  ` `// with characters arranged in non-decreasing  ` `// order of ASCII and in arithmetic progression ` ` `  `using` `System; ` `using` `System.Collections ; ` ` `  `public` `class` `GFG {  ` `    ``// Function to find the longest String  ` `    ``static` `String findLongestString(String S)  ` `    ``{  ` `        ``// Stores the maximum length of required string  ` `        ``int` `maxLen = 0;  ` `     `  `        ``// Stores the optimal starting character of  ` `        ``// required string or arithmetic progression sequence  ` `        ``int` `bestStartChar = 0;  ` `     `  `        ``// Stores the optimal i.e. minimum common difference  ` `        ``// of required string  ` `        ``int` `minCommonDifference = Int32.MaxValue ;  ` `     `  `        ``Hashtable hm = ``new` `Hashtable ();  ` `        ``for` `(``int` `i = 0; i < S.Length; i++)  ` `            ``hm.Add(S[i], ``true``);  ` `     `  `        ``// Iterate over the loop in non decreasing order  ` `        ``for` `(``int` `startChar = ``'Z'``; startChar > ``'A'``; startChar--) {  ` `     `  `            ``// Process further only if current character  ` `            ``// exists in the given string  ` `            ``if` `(hm.ContainsKey((``char``)startChar)) {  ` `     `  `                ``// Iterate over all possible common differences  ` `                ``// of AP sequence and update maxLen accordingly  ` `                ``for` `(``int` `currDiff = 1; currDiff <= 12; currDiff++) {  ` `                    ``int` `currLen = 1;  ` `     `  `                    ``// Iterate over the characters at any interval  ` `                    ``// of current common difference  ` `                    ``for` `(``int` `ch = startChar - currDiff; ch >= ``'A'``;  ` `                        ``ch -= currDiff) {  ` `                        ``if` `(hm.ContainsKey((``char``)ch))  ` `                            ``currLen++;  ` `                        ``else` `                            ``break``;  ` `                    ``}  ` `     `  `                    ``// Update maxLen and other parameters if the currLen  ` `                    ``// is greater than maxLen or if the current  ` `                    ``// difference is smaller than minCommonDifference  ` `                    ``if` `(currLen > maxLen || (currLen == maxLen  ` `                                ``&& currDiff < minCommonDifference)) {  ` `                        ``minCommonDifference = currDiff;  ` `                        ``maxLen = currLen;  ` `                        ``bestStartChar = startChar;  ` `                    ``}  ` `                ``}  ` `            ``}  ` `        ``}  ` `        ``String longestString = ``""``;  ` `     `  `        ``// Store the string in decreasing order of  ` `        ``// arithmetic progression  ` `        ``char` `ch1;  ` `        ``for` `(``int` `i = bestStartChar;  ` `        ``i >= (bestStartChar - (maxLen - 1) * minCommonDifference);  ` `        ``i -= minCommonDifference)  ` `        ``{  ` `            ``ch1 = (``char``)i;  ` `            ``longestString += ch1;  ` `        ``}  ` `        ``return` `longestString;  ` `    ``}  ` ` `  `    ``// Driver Code  ` `    ``public` `static` `void` `Main()  ` `    ``{  ` `        ``String S = ``"ADGJPRT"``;  ` `        ``Console.WriteLine(findLongestString(S));  ` `    ``} ` `    ``// This code is contributed by Ryuga  ` `}  `

Output:
```JGDA
```

Time Complexity : O(|S| + 26*12*26), where |S| is the size of the string.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

Practice Tags :