# Longest permutation subsequence in a given array

• Last Updated : 25 Aug, 2021

Given an array arr containing N elements, find the length of the longest subsequence such that it is a valid permutation of a particular length. If no such permutation sequence exists then print 0.
Examples:

Input: arr[] = {3, 2, 1, 6, 5}
Output:
Explanation:
Longest permutation subsequence will be [3, 2, 1].
Input: arr[]= {2, 3, 4, 5}
Output:
Explanation:
No valid permutation subsequence present as element 1 is missing.

Approach: The above-mentioned problem is on permutation subsequence so the order of the array elements is irrelevant, only what matter is the frequency of each element. If array is of length N then the maximum possible length for the permutation sequence is N and minimum possible length is 0. If the subsequence of length L is a valid permutation then all elements from 1 to L should be present

1. Count the frequency of the elements in the range [1, N] from the array
2. Iterate through all elements from 1 to N in the array and count the iterations till a 0 frequency is observed. If the frequency of an element is ‘0’, return the current count of iterations as the required length.

Below is the implementation of the above approach:

## C++

 `// C++ Program to find length of``// Longest Permutation Subsequence``// in a given array` `#include ``using` `namespace` `std;` `// Function to find the``// longest permutation subsequence``int` `longestPermutation(``int` `a[], ``int` `n)``{` `    ``// Map data structure to``    ``// count the frequency of each element``    ``map<``int``, ``int``> freq;` `    ``for` `(``int` `i = 0; i < n; i++) {` `        ``freq[a[i]]++;``    ``}` `    ``int` `len = 0;` `    ``for` `(``int` `i = 1; i <= n; i++) {` `        ``// If frequency of element is 0,``        ``// then we can not move forward``        ``// as every element should be present``        ``if` `(freq[i] == 0) {``            ``break``;``        ``}` `        ``// Increasing the length by one``        ``len++;``    ``}` `    ``return` `len;``}` `// Driver Code``int` `main()``{` `    ``int` `arr[] = { 3, 2, 1, 6, 5 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);` `    ``cout << longestPermutation(arr, n)``         ``<< ``"\n"``;` `    ``return` `0;``}`

## Java

 `// Java Program to find length of``// Longest Permutation Subsequence``// in a given array``import` `java.util.*;` `class` `GFG{`` ` `// Function to find the``// longest permutation subsequence``static` `int` `longestPermutation(``int` `arr[], ``int` `n)``{`` ` `    ``// Map data structure to``    ``// count the frequency of each element``    ``HashMap freq = ``new` `HashMap();`` ` `    ``for` `(``int` `i = ``0``; i < n; i++) {`` ` `        ``if``(freq.containsKey(arr[i])){``            ``freq.put(arr[i], freq.get(arr[i])+``1``);``        ``}``else``{``            ``freq.put(arr[i], ``1``);``        ``}``    ``}`` ` `    ``int` `len = ``0``;`` ` `    ``for` `(``int` `i = ``1``; i <= n; i++) {`` ` `        ``// If frequency of element is 0,``        ``// then we can not move forward``        ``// as every element should be present``        ``if` `(!freq.containsKey(i)) {``            ``break``;``        ``}`` ` `        ``// Increasing the length by one``        ``len++;``    ``}`` ` `    ``return` `len;``}`` ` `// Driver Code``public` `static` `void` `main(String[] args)``{`` ` `    ``int` `arr[] = { ``3``, ``2``, ``1``, ``6``, ``5` `};``    ``int` `n = arr.length;`` ` `    ``System.out.print(longestPermutation(arr, n));`` ` `}``}` `// This code is contributed by Rajput-Ji`

## C#

 `// C# Program to find length of``// longest Permutation Subsequence``// in a given array` `using` `System;``using` `System.Collections.Generic;` `public` `class` `GFG{` `// Function to find the``// longest permutation subsequence``static` `int` `longestPermutation(``int` `[]arr, ``int` `n)``{` `    ``// Map data structure to``    ``// count the frequency of each element``    ``Dictionary<``int``,``int``> freq = ``new` `Dictionary<``int``,``int``>();` `    ``for` `(``int` `i = 0; i < n; i++) {` `        ``if``(freq.ContainsKey(arr[i])){``            ``freq[arr[i]] = freq[arr[i]] + 1;``        ``}``else``{``            ``freq.Add(arr[i], 1);``        ``}``    ``}` `    ``int` `len = 0;` `    ``for` `(``int` `i = 1; i <= n; i++) {` `        ``// If frequency of element is 0,``        ``// then we can not move forward``        ``// as every element should be present``        ``if` `(!freq.ContainsKey(i)) {``            ``break``;``        ``}` `        ``// Increasing the length by one``        ``len++;``    ``}` `    ``return` `len;``}` `// Driver Code``public` `static` `void` `Main(String[] args)``{` `    ``int` `[]arr = { 3, 2, 1, 6, 5 };``    ``int` `n = arr.Length;` `    ``Console.Write(longestPermutation(arr, n));` `}``}` `// This code is contributed by 29AjayKumar`

## Python3

 `# Program to find length of``# Longest Permutation Subsequence``# in a given array``from` `collections ``import` `defaultdict` `# Function to find the``# longest permutation subsequence``def` `longestPermutation(a, n):`` ` `    ``# Map data structure to``    ``# count the frequency of each element``    ``freq ``=` `defaultdict(``int``)`` ` `    ``for` `i ``in` `range``( n ):`` ` `        ``freq[a[i]] ``+``=` `1`` ` `    ``length ``=` `0`` ` `    ``for` `i ``in` `range``(``1` `, n ``+` `1``):`` ` `        ``# If frequency of element is 0,``        ``# then we can not move forward``        ``# as every element should be present``        ``if` `(freq[i] ``=``=` `0``):``            ``break`` ` `        ``# Increasing the length by one``        ``length ``+``=` `1``        ` `    ``return` `length`` ` `# Driver Code``if` `__name__ ``=``=` `"__main__"``:`` ` `    ``arr ``=` `[ ``3``, ``2``, ``1``, ``6``, ``5` `]``    ``n ``=` `len``(arr)`` ` `    ``print``(longestPermutation(arr, n))` `# This code is contributed by chitranayal`

## Javascript

 ``

Output:

`3`

Time Complexity: O(N)
Auxiliary Space Complexity: O(N)

My Personal Notes arrow_drop_up