Longest path in an undirected tree
Given an undirected tree, we need to find the longest path of this tree where a path is defined as a sequence of nodes.
Example:
Input : Below shown Tree using adjacency list representation: Output : 5 In below tree longest path is of length 5 from node 5 to node 7
This problem is the same as the diameter of the n-ary tree. We have discussed a simple solution here.
In this post, an efficient solution is discussed. We can find the longest path using two BFSs. The idea is based on the following fact: If we start BFS from any node x and find a node with the longest distance from x, it must be an endpoint of the longest path. It can be proved using contradiction. So our algorithm reduces to simple two BFSs. First BFS to find an endpoint of the longest path and second BFS from this endpoint to find the actual longest path.
For the proof of why does this algorithm works, there is a nice explanation here Proof of correctness: Algorithm for the diameter of a tree in graph theory
As we can see in the above diagram, if we start our BFS from node-0, the node at the farthest distance from it will be node-5, now if we start our BFS from node-5 the node at the farthest distance will be node-7, finally, the path from node-5 to node-7 will constitute our longest path.
Implementation:
C++
// C++ program to find longest path of the tree #include <bits/stdc++.h> using namespace std; // This class represents a undirected graph using adjacency list class Graph { int V; // No. of vertices list< int > *adj; // Pointer to an array containing // adjacency lists public : Graph( int V); // Constructor void addEdge( int v, int w); // function to add an edge to graph void longestPathLength(); // prints longest path of the tree pair< int , int > bfs( int u); // function returns maximum distant // node from u with its distance }; Graph::Graph( int V) { this ->V = V; adj = new list< int >[V]; } void Graph::addEdge( int v, int w) { adj[v].push_back(w); // Add w to v’s list. adj[w].push_back(v); // Since the graph is undirected } // method returns farthest node and its distance from node u pair< int , int > Graph::bfs( int u) { // mark all distance with -1 int dis[V]; memset (dis, -1, sizeof (dis)); queue< int > q; q.push(u); // distance of u from u will be 0 dis[u] = 0; while (!q.empty()) { int t = q.front(); q.pop(); // loop for all adjacent nodes of node-t for ( auto it = adj[t].begin(); it != adj[t].end(); it++) { int v = *it; // push node into queue only if // it is not visited already if (dis[v] == -1) { q.push(v); // make distance of v, one more // than distance of t dis[v] = dis[t] + 1; } } } int maxDis = 0; int nodeIdx; // get farthest node distance and its index for ( int i = 0; i < V; i++) { if (dis[i] > maxDis) { maxDis = dis[i]; nodeIdx = i; } } return make_pair(nodeIdx, maxDis); } // method prints longest path of given tree void Graph::longestPathLength() { pair< int , int > t1, t2; // first bfs to find one end point of // longest path t1 = bfs(0); // second bfs to find actual longest path t2 = bfs(t1.first); cout << "Longest path is from " << t1.first << " to " << t2.first << " of length " << t2.second; } // Driver code to test above methods int main() { // Create a graph given in the example Graph g(10); g.addEdge(0, 1); g.addEdge(1, 2); g.addEdge(2, 3); g.addEdge(2, 9); g.addEdge(2, 4); g.addEdge(4, 5); g.addEdge(1, 6); g.addEdge(6, 7); g.addEdge(6, 8); g.longestPathLength(); return 0; } |
Java
// Java program to find longest path of the tree import java.util.Arrays; import java.util.LinkedList; import java.util.Queue; class LongestPathUndirectedTree { // Utility Pair class for storing maximum distance // Node with its distance static class Pair<T,V> { T first; // maximum distance Node V second; // distance of maximum distance node //Constructor Pair(T first, V second) { this .first = first; this .second = second; } } // This class represents a undirected graph using adjacency list static class Graph { int V; // No. of vertices LinkedList<Integer>[] adj; //Adjacency List // Constructor Graph( int V) { this .V = V; // Initializing Adjacency List adj = new LinkedList[V]; for ( int i = 0 ; i < V; ++i) { adj[i] = new LinkedList<Integer>(); } } // function to add an edge to graph void addEdge( int s, int d) { adj[s].add(d); // Add d to s's list. adj[d].add(s); // Since the graph is undirected } // method returns farthest node and its distance from node u Pair<Integer, Integer> bfs( int u) { int [] dis = new int [V]; // mark all distance with -1 Arrays.fill(dis, - 1 ); Queue<Integer> q = new LinkedList<>(); q.add(u); // distance of u from u will be 0 dis[u] = 0 ; while (!q.isEmpty()) { int t = q.poll(); // loop for all adjacent nodes of node-t for ( int i = 0 ; i < adj[t].size(); ++i) { int v = adj[t].get(i); // push node into queue only if // it is not visited already if (dis[v] == - 1 ) { q.add(v); // make distance of v, one more // than distance of t dis[v] = dis[t] + 1 ; } } } int maxDis = 0 ; int nodeIdx = 0 ; // get farthest node distance and its index for ( int i = 0 ; i < V; ++i) { if (dis[i] > maxDis) { maxDis = dis[i]; nodeIdx = i; } } return new Pair<Integer, Integer>(nodeIdx, maxDis); } // method prints longest path of given tree void longestPathLength() { Pair<Integer, Integer> t1, t2; // first bfs to find one end point of // longest path t1 = bfs( 0 ); // second bfs to find actual longest path t2 = bfs(t1.first); System.out.println( "Longest path is from " + t1.first + " to " + t2.first + " of length " +t2.second); } } // Driver code to test above methods public static void main(String[] args){ // Create a graph given in the example Graph graph = new Graph( 10 ); graph.addEdge( 0 , 1 ); graph.addEdge( 1 , 2 ); graph.addEdge( 2 , 3 ); graph.addEdge( 2 , 9 ); graph.addEdge( 2 , 4 ); graph.addEdge( 4 , 5 ); graph.addEdge( 1 , 6 ); graph.addEdge( 6 , 7 ); graph.addEdge( 6 , 8 ); graph.longestPathLength(); } } // Added By Brij Raj Kishore |
C#
// C# program to find longest path of the tree using System; using System.Collections.Generic; class GFG { // Utility Pair class for storing // maximum distance Node with its distance public class Pair<T, V> { // maximum distance Node public T first; // distance of maximum distance node public V second; // Constructor public Pair(T first, V second) { this .first = first; this .second = second; } } // This class represents a undirected graph // using adjacency list class Graph { int V; // No. of vertices List< int >[] adj; //Adjacency List // Constructor public Graph( int V) { this .V = V; // Initializing Adjacency List adj = new List< int >[V]; for ( int i = 0; i < V; ++i) { adj[i] = new List< int >(); } } // function to add an edge to graph public void addEdge( int s, int d) { adj[s].Add(d); // Add d to s's list. adj[d].Add(s); // Since the graph is undirected } // method returns farthest node and // its distance from node u public Pair< int , int > bfs( int u) { int [] dis = new int [V]; // mark all distance with -1 for ( int i = 0; i < V; i++) dis[i] = -1; Queue< int > q = new Queue< int >(); q.Enqueue(u); // distance of u from u will be 0 dis[u] = 0; while (q.Count != 0) { int t = q.Dequeue(); // loop for all adjacent nodes of node-t for ( int i = 0; i < adj[t].Count; ++i) { int v = adj[t][i]; // push node into queue only if // it is not visited already if (dis[v] == -1) { q.Enqueue(v); // make distance of v, one more // than distance of t dis[v] = dis[t] + 1; } } } int maxDis = 0; int nodeIdx = 0; // get farthest node distance and its index for ( int i = 0; i < V; ++i) { if (dis[i] > maxDis) { maxDis = dis[i]; nodeIdx = i; } } return new Pair< int , int >(nodeIdx, maxDis); } // method prints longest path of given tree public void longestPathLength() { Pair< int , int > t1, t2; // first bfs to find one end point of // longest path t1 = bfs(0); // second bfs to find actual longest path t2 = bfs(t1.first); Console.WriteLine( "longest path is from " + t1.first + " to " + t2.first + " of length " + t2.second); } } // Driver Code public static void Main(String[] args) { // Create a graph given in the example Graph graph = new Graph(10); graph.addEdge(0, 1); graph.addEdge(1, 2); graph.addEdge(2, 3); graph.addEdge(2, 9); graph.addEdge(2, 4); graph.addEdge(4, 5); graph.addEdge(1, 6); graph.addEdge(6, 7); graph.addEdge(6, 8); graph.longestPathLength(); } } // This code is contributed by Rajput-Ji |
Python3
# Python program to find the Longest Path of the Tree # By Aaditya Upadhyay from collections import deque class Graph: # Initialisation of graph def __init__( self , vertices): # No. of vertices self .vertices = vertices # adjacency list self .adj = {i: [] for i in range ( self .vertices)} def addEdge( self , u, v): # add u to v's list self .adj[u].append(v) # since the graph is undirected self .adj[v].append(u) # method return farthest node and its distance from node u def BFS( self , u): # marking all nodes as unvisited visited = [ False for i in range ( self .vertices + 1 )] # mark all distance with -1 distance = [ - 1 for i in range ( self .vertices + 1 )] # distance of u from u will be 0 distance[u] = 0 # in-built library for queue which performs fast operations on both the ends queue = deque() queue.append(u) # mark node u as visited visited[u] = True while queue: # pop the front of the queue(0th element) front = queue.popleft() # loop for all adjacent nodes of node front for i in self .adj[front]: if not visited[i]: # mark the ith node as visited visited[i] = True # make distance of i , one more than distance of front distance[i] = distance[front] + 1 # Push node into the stack only if it is not visited already queue.append(i) maxDis = 0 # get farthest node distance and its index for i in range ( self .vertices): if distance[i] > maxDis: maxDis = distance[i] nodeIdx = i return nodeIdx, maxDis # method prints longest path of given tree def LongestPathLength( self ): # first DFS to find one end point of longest path node, Dis = self .BFS( 0 ) # second DFS to find the actual longest path node_2, LongDis = self .BFS(node) print ( 'Longest path is from' , node, 'to' , node_2, 'of length' , LongDis) # create a graph given in the example G = Graph( 10 ) G.addEdge( 0 , 1 ) G.addEdge( 1 , 2 ) G.addEdge( 2 , 3 ) G.addEdge( 2 , 9 ) G.addEdge( 2 , 4 ) G.addEdge( 4 , 5 ) G.addEdge( 1 , 6 ) G.addEdge( 6 , 7 ) G.addEdge( 6 , 8 ) G.LongestPathLength() |
Javascript
<script> // Javascript program to find longest path of the tree // Utility Pair class for storing // maximum distance Node with its distance class Pair { // Constructor constructor(first, second) { this .first = first; this .second = second; } } // This class represents a undirected graph // using adjacency list var V; // No. of vertices var adj; //Adjacency List // Constructor function initialize(V) { this .V = V; // Initializing Adjacency List adj = Array.from(Array(V), ()=>Array()); } // function to add an edge to graph function addEdge(s, d) { adj[s].push(d); // push d to s's list. adj[d].push(s); // Since the graph is undirected } // method returns farthest node and // its distance from node u function bfs(u) { var dis = Array(V); // mark all distance with -1 for ( var i = 0; i < V; i++) dis[i] = -1; var q = []; q.push(u); // distance of u from u will be 0 dis[u] = 0; while (q.length != 0) { var t = q.shift(); // loop for all adjacent nodes of node-t for ( var i = 0; i < adj[t].length; ++i) { var v = adj[t][i]; // push node into queue only if // it is not visited already if (dis[v] == -1) { q.push(v); // make distance of v, one more // than distance of t dis[v] = dis[t] + 1; } } } var maxDis = 0; var nodeIdx = 0; // get farthest node distance and its index for ( var i = 0; i < V; ++i) { if (dis[i] > maxDis) { maxDis = dis[i]; nodeIdx = i; } } return new Pair(nodeIdx, maxDis); } // method prints longest path of given tree function longestPathLength() { var t1, t2; // first bfs to find one end point of // longest path t1 = bfs(0); // second bfs to find actual longest path t2 = bfs(t1.first); document.write( "longest path is from " + t1.first + " to " + t2.first + " of length " + t2.second); } // Create a graph given in the example initialize(10) addEdge(0, 1); addEdge(1, 2); addEdge(2, 3); addEdge(2, 9); addEdge(2, 4); addEdge(4, 5); addEdge(1, 6); addEdge(6, 7); addEdge(6, 8); longestPathLength(); // This code is contributed by famously. </script> |
Longest path is from 5 to 7 of length 5
Time Complexity: O(V+E) where V is the number of vertices and E is the number of edges.
Auxiliary Space: O(V+E)
This article is contributed by Utkarsh Trivedi. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...