Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Longest Palindromic Subsequence | DP-12

  • Difficulty Level : Medium
  • Last Updated : 01 Sep, 2021
 

Given a sequence, find the length of the longest palindromic subsequence in it.
 

longest-palindromic-subsequence

Become a success story instead of just reading about them. Prepare for coding interviews at Amazon and other top product-based companies with our Amazon Test Series. Includes topic-wise practice questions on all important DSA topics along with 10 practice contests of 2 hours each. Designed by industry experts that will surely help you practice and sharpen your programming skills. Wait no more, start your preparation today!

As another example, if the given sequence is “BBABCBCAB”, then the output should be 7 as “BABCBAB” is the longest palindromic subsequence in it. “BBBBB” and “BBCBB” are also palindromic subsequences of the given sequence, but not the longest ones.
The naive solution for this problem is to generate all subsequences of the given sequence and find the longest palindromic subsequence. This solution is exponential in term of time complexity. Let us see how this problem possesses both important properties of a Dynamic Programming (DP) Problem and can efficiently be solved using Dynamic Programming.
1) Optimal Substructure: 
Let X[0..n-1] be the input sequence of length n and L(0, n-1) be the length of the longest palindromic subsequence of X[0..n-1]. 
If last and first characters of X are same, then L(0, n-1) = L(1, n-2) + 2. 
Else L(0, n-1) = MAX (L(1, n-1), L(0, n-2)). 
 

Following is a general recursive solution with all cases handled. 
 



 
// Every single character is a palindrome of length 1
L(i, i) = 1 for all indexes i in given sequence

// IF first and last characters are not same
If (X[i] != X[j])  L(i, j) =  max{L(i + 1, j),L(i, j - 1)} 

// If there are only 2 characters and both are same
Else if (j == i + 1) L(i, j) = 2  

// If there are more than two characters, and first and last 
// characters are same
Else L(i, j) =  L(i + 1, j - 1) + 2 

2) Overlapping Subproblems 
Following is a simple recursive implementation of the LPS problem. The implementation simply follows the recursive structure mentioned above. 
 

C++




// C++ program of above approach
#include<bits/stdc++.h>
using namespace std;
 
// A utility function to get max of two integers
int max (int x, int y) { return (x > y)? x : y; }
 
// Returns the length of the longest palindromic subsequence in seq
int lps(char *seq, int i, int j)
{
// Base Case 1: If there is only 1 character
if (i == j)
    return 1;
 
// Base Case 2: If there are only 2
// characters and both are same
if (seq[i] == seq[j] && i + 1 == j)
    return 2;
 
// If the first and last characters match
if (seq[i] == seq[j])
    return lps (seq, i+1, j-1) + 2;
 
// If the first and last characters do not match
return max( lps(seq, i, j-1), lps(seq, i+1, j) );
}
 
/* Driver program to test above functions */
int main()
{
    char seq[] = "GEEKSFORGEEKS";
    int n = strlen(seq);
    cout << "The length of the LPS is "
         << lps(seq, 0, n-1);
    return 0;
}
 
// This code is contributed
// by Akanksha Rai

C




// C program of above approach
#include<stdio.h>
#include<string.h>
 
// A utility function to get max of two integers
int max (int x, int y) { return (x > y)? x : y; }
 
// Returns the length of the longest palindromic subsequence in seq
int lps(char *seq, int i, int j)
{
   // Base Case 1: If there is only 1 character
   if (i == j)
     return 1;
 
   // Base Case 2: If there are only 2 characters and both are same
   if (seq[i] == seq[j] && i + 1 == j)
     return 2;
 
   // If the first and last characters match
   if (seq[i] == seq[j])
      return lps (seq, i+1, j-1) + 2;
 
   // If the first and last characters do not match
   return max( lps(seq, i, j-1), lps(seq, i+1, j) );
}
 
/* Driver program to test above functions */
int main()
{
    char seq[] = "GEEKSFORGEEKS";
    int n = strlen(seq);
    printf ("The length of the LPS is %d", lps(seq, 0, n-1));
    getchar();
    return 0;
}

Java




//Java program of above approach
 
class GFG {
 
    // A utility function to get max of two integers
    static int max(int x, int y) {
        return (x > y) ? x : y;
    }
    // Returns the length of the longest palindromic subsequence in seq
 
    static int lps(char seq[], int i, int j) {
    // Base Case 1: If there is only 1 character
        if (i == j) {
            return 1;
        }
 
    // Base Case 2: If there are only 2 characters and both are same
        if (seq[i] == seq[j] && i + 1 == j) {
            return 2;
        }
 
    // If the first and last characters match
        if (seq[i] == seq[j]) {
            return lps(seq, i + 1, j - 1) + 2;
        }
 
    // If the first and last characters do not match
        return max(lps(seq, i, j - 1), lps(seq, i + 1, j));
    }
 
 
    /* Driver program to test above function */
    public static void main(String[] args) {
        String seq = "GEEKSFORGEEKS";
        int n = seq.length();
        System.out.printf("The length of the LPS is %d", lps(seq.toCharArray(), 0, n - 1));
 
    }
}

Python3




# Python 3 program of above approach
 
# A utility function to get max
# of two egers
def max(x, y):
    if(x > y):
        return x
    return y
     
# Returns the length of the longest
# palindromic subsequence in seq
def lps(seq, i, j):
     
    # Base Case 1: If there is
    # only 1 character
    if (i == j):
        return 1
 
    # Base Case 2: If there are only 2
    # characters and both are same
    if (seq[i] == seq[j] and i + 1 == j):
        return 2
     
    # If the first and last characters match
    if (seq[i] == seq[j]):
        return lps(seq, i + 1, j - 1) + 2
 
    # If the first and last characters
    # do not match
    return max(lps(seq, i, j - 1),
               lps(seq, i + 1, j))
 
# Driver Code
if __name__ == '__main__':
    seq = "GEEKSFORGEEKS"
    n = len(seq)
    print("The length of the LPS is",
                  lps(seq, 0, n - 1))
     
# This code contributed by Rajput-Ji

C#




// C# program of the above approach
using System;
                     
public class GFG{
 
    // A utility function to get max of two integers
    static int max(int x, int y) {
        return (x > y) ? x : y;
    }
    // Returns the length of the longest palindromic subsequence in seq
  
    static int lps(char []seq, int i, int j) {
    // Base Case 1: If there is only 1 character
        if (i == j) {
            return 1;
        }
  
    // Base Case 2: If there are only 2 characters and both are same
        if (seq[i] == seq[j] && i + 1 == j) {
            return 2;
        }
  
    // If the first and last characters match
        if (seq[i] == seq[j]) {
            return lps(seq, i + 1, j - 1) + 2;
        }
  
    // If the first and last characters do not match
        return max(lps(seq, i, j - 1), lps(seq, i + 1, j));
    }
  
  
    /* Driver program to test above function */
    public static void Main() {
        String seq = "GEEKSFORGEEKS";
        int n = seq.Length;
        Console.Write("The length of the LPS is "+lps(seq.ToCharArray(), 0, n - 1));
  
    }
}
 
// This code is contributed by Rajput-Ji

PHP




<?php
// PHP program of above approach
 
// Returns the length of the longest
// palindromic subsequence in seq
function lps($seq, $i, $j)
{
     
    // Base Case 1: If there is
    // only 1 character
    if ($i == $j)
        return 1;
     
    // Base Case 2: If there are only 2
    // characters and both are same
    if ($seq[$i] == $seq[$j] && $i + 1 == $j)
        return 2;
     
    // If the first and last characters match
    if ($seq[$i] == $seq[$j])
        return lps ($seq, $i + 1, $j - 1) + 2;
     
    // If the first and last characters
    // do not match
    return max(lps($seq, $i, $j - 1),
               lps($seq, $i + 1, $j));
}
 
// Driver Code
$seq = "GEEKSFORGEEKS";
$n = strlen($seq);
echo "The length of the LPS is ".
            lps($seq, 0, $n - 1);
             
// This code is contributed by ita_c
?>

Javascript




<script>
     
    // A utility function to get max of two integers 
    function max(x, y)
    {
        return (x > y) ? x : y;
    }
     
    // Returns the length of the longest palindromic subsequence in seq    
    function lps(seq, i, j)
    {
        // Base Case 1: If there is only 1 character
        if (i == j)
        {
            return 1;
        }
   
        // Base Case 2: If there are only 2 characters and both are same 
            if (seq[i] == seq[j] && i + 1 == j)
            {
                return 2;
            }
       
        // If the first and last characters match 
            if (seq[i] == seq[j])
            {
                return lps(seq, i + 1, j - 1) + 2;
            }
       
        // If the first and last characters do not match 
            return max(lps(seq, i, j - 1), lps(seq, i + 1, j));
    }
     
    /* Driver program to test above function */
    let seq = "GEEKSFORGEEKS";
    let n = seq.length;
    document.write("The length of the LPS is ", lps(seq.split(""), 0, n - 1));
     
    // This code is contributed by avanitrachhadiya2155
</script>

Output: 
 

The length of the LPS is 5

Considering the above implementation, the following is a partial recursion tree for a sequence of length 6 with all different characters. 
 

               L(0, 5)
             /        \ 
            /          \  
        L(1,5)          L(0,4)
       /    \            /    \
      /      \          /      \
  L(2,5)    L(1,4)  L(1,4)  L(0,3)

In the above partial recursion tree, L(1, 4) is being solved twice. If we draw the complete recursion tree, then we can see that there are many subproblems which are solved again and again. Since the same subproblems are called again, this problem has Overlapping Subproblems property. So LPS problem has both properties (see this and this) of a dynamic programming problem. Like other typical Dynamic Programming(DP) problems, recomputations of same subproblems can be avoided by constructing a temporary array L[][] in a bottom-up manner.
Dynamic Programming Solution 
 

C++




// A Dynamic Programming based C++ program for LPS problem
// Returns the length of the longest palindromic subsequence in seq
#include<stdio.h>
#include<string.h>
 
// A utility function to get max of two integers
int max (int x, int y) { return (x > y)? x : y; }
 
// Returns the length of the longest palindromic subsequence in seq
int lps(char *str)
{
   int n = strlen(str);
   int i, j, cl;
   int L[n][n];  // Create a table to store results of subproblems
 
 
   // Strings of length 1 are palindrome of length 1
   for (i = 0; i < n; i++)
      L[i][i] = 1;
 
    // Build the table. Note that the lower diagonal values of table are
    // useless and not filled in the process. The values are filled in a
    // manner similar to Matrix Chain Multiplication DP solution (See
    // substring
    for (cl=2; cl<=n; cl++)
    {
        for (i=0; i<n-cl+1; i++)
        {
            j = i+cl-1;
            if (str[i] == str[j] && cl == 2)
               L[i][j] = 2;
            else if (str[i] == str[j])
               L[i][j] = L[i+1][j-1] + 2;
            else
               L[i][j] = max(L[i][j-1], L[i+1][j]);
        }
    }
 
    return L[0][n-1];
}
 
/* Driver program to test above functions */
int main()
{
    char seq[] = "GEEKS FOR GEEKS";
    int n = strlen(seq);
    printf ("The length of the LPS is %d", lps(seq));
    getchar();
    return 0;
}

Java




// A Dynamic Programming based Java
// Program for the Egg Dropping Puzzle
class LPS
{
 
    // A utility function to get max of two integers
    static int max (int x, int y) { return (x > y)? x : y; }
     
    // Returns the length of the longest
    // palindromic subsequence in seq
    static int lps(String seq)
    {
    int n = seq.length();
    int i, j, cl;
    // Create a table to store results of subproblems
    int L[][] = new int[n][n];
     
    // Strings of length 1 are palindrome of length 1
    for (i = 0; i < n; i++)
        L[i][i] = 1;
             
        // Build the table. Note that the lower
        // diagonal values of table are
        // useless and not filled in the process.
        // The values are filled in a manner similar
        //  to Matrix Chain Multiplication DP solution (See
        // cl is length of substring
        for (cl=2; cl<=n; cl++)
        {
            for (i=0; i<n-cl+1; i++)
            {
                j = i+cl-1;
                if (seq.charAt(i) == seq.charAt(j) && cl == 2)
                L[i][j] = 2;
                else if (seq.charAt(i) == seq.charAt(j))
                L[i][j] = L[i+1][j-1] + 2;
                else
                L[i][j] = max(L[i][j-1], L[i+1][j]);
            }
        }
             
        return L[0][n-1];
    }
         
    /* Driver program to test above functions */
    public static void main(String args[])
    {
        String seq = "GEEKSFORGEEKS";
        int n = seq.length();
        System.out.println("The length of the lps is "+ lps(seq));
    }
}
/* This code is contributed by Rajat Mishra */

Python




# A Dynamic Programming based Python
# program for LPS problem Returns the length
#  of the longest palindromic subsequence in seq
def lps(str):
    n = len(str)
 
    # Create a table to store results of subproblems
    L = [[0 for x in range(n)] for x in range(n)]
 
    # Strings of length 1 are palindrome of length 1
    for i in range(n):
        L[i][i] = 1
 
    # Build the table. Note that the lower
    # diagonal values of table are
    # useless and not filled in the process.
    # The values are filled in a
    # manner similar to Matrix Chain
    # Multiplication DP solution (See
    # cl is length of substring
    for cl in range(2, n+1):
        for i in range(n-cl+1):
            j = i+cl-1
            if str[i] == str[j] and cl == 2:
                L[i][j] = 2
            elif str[i] == str[j]:
                L[i][j] = L[i+1][j-1] + 2
            else:
                L[i][j] = max(L[i][j-1], L[i+1][j]);
 
    return L[0][n-1]
 
# Driver program to test above functions
seq = "GEEKS FOR GEEKS"
n = len(seq)
print("The length of the LPS is " + str(lps(seq)))
 
# This code is contributed by Bhavya Jain

C#




// A Dynamic Programming based C# Program
// for the Egg Dropping Puzzle
using System;
 
class GFG {
 
    // A utility function to get max of
    // two integers
    static int max (int x, int y)
    {
        return (x > y)? x : y;
    }
     
    // Returns the length of the longest
    // palindromic subsequence in seq
    static int lps(string seq)
    {
    int n = seq.Length;
    int i, j, cl;
     
    // Create a table to store results
    // of subproblems
    int [,]L = new int[n,n];
     
    // Strings of length 1 are
    // palindrome of length 1
    for (i = 0; i < n; i++)
        L[i,i] = 1;
             
        // Build the table. Note that the
        // lower diagonal values of table
        // are useless and not filled in
        // the process. The values are
        // filled in a manner similar to
        // Matrix Chain Multiplication DP
        // solution (See
        // cl is length of substring
        for (cl = 2; cl <= n; cl++)
        {
            for (i = 0; i < n-cl+1; i++)
            {
                j = i + cl - 1;
                 
                if (seq[i] == seq[j] &&
                                  cl == 2)
                    L[i,j] = 2;
                else if (seq[i] == seq[j])
                    L[i,j] = L[i+1,j-1] + 2;
                else
                    L[i,j] =
                     max(L[i,j-1], L[i+1,j]);
            }
        }
             
        return L[0,n-1];
    }
         
    /* Driver program to test above
    functions */
    public static void Main()
    {
        string seq = "GEEKS FOR GEEKS";
        int n = seq.Length;
        Console.Write("The length of the "
                  + "lps is "+ lps(seq));
    }
}
 
// This code is contributed by nitin mittal.

PHP




<?php
// A Dynamic Programming based
// PHP program for LPS problem
// Returns the length of the
// longest palindromic
// subsequence in seq
 
// A utility function to get
// max of two integers
// function max( $x, $y)
// { return ($x > $y)? $x : $y; }
 
// Returns the length of the
// longest palindromic
// subsequence in seq
function lps($str)
{
$n = strlen($str);
$i; $j; $cl;
 
// Create a table to store
// results of subproblems
$L[][] = array(array());
 
 
// Strings of length 1 are
// palindrome of length 1
for ($i = 0; $i < $n; $i++)
    $L[$i][$i] = 1;
 
    // Build the table. Note that
    // the lower diagonal values
    // of table are useless and
    // not filled in the process.
    // The values are filled in a
    // manner similar to Matrix
    // Chain Multiplication DP
    // solution (See
    // cl is length of substring
    for ($cl = 2; $cl <= $n; $cl++)
    {
        for ($i = 0; $i < $n - $cl + 1; $i++)
        {
            $j = $i + $cl - 1;
            if ($str[$i] == $str[$j] &&
                            $cl == 2)
            $L[$i][$j] = 2;
            else if ($str[$i] == $str[$j])
            $L[$i][$j] = $L[$i + 1][$j - 1] + 2;
            else
            $L[$i][$j] = max($L[$i][$j - 1],
                             $L[$i + 1][$j]);
        }
    }
 
    return $L[0][$n - 1];
}
 
// Driver Code
$seq = 'GEEKS FOR GEEKS';
$n = strlen($seq);
echo "The length of the " .
      "LPS is ", lps($seq);
 
// This code is contributed
// by shiv_bhakt.
?>

Javascript




<script>
// A Dynamic Programming based Javascript
// Program for the Egg Dropping Puzzle
 
// A utility function to get max of two integers
function max(x,y)
{
    return (x > y)? x : y;
}
 
// Returns the length of the longest
    // palindromic subsequence in seq
function lps(seq)
{
    let n = seq.length;
    let i, j, cl;
    // Create a table to store results of subproblems
    let L = new Array(n);
    for(let x=0;x<n;x++)
    {
        L[x] = new Array(n);
        for(let y = 0; y < n; y++)
            L[x][y] = 0;
    }
      
    // Strings of length 1 are palindrome of length 1
    for (i = 0; i < n; i++)
        L[i][i] = 1;
              
        // Build the table. Note that the lower
        // diagonal values of table are
        // useless and not filled in the process.
        // The values are filled in a manner similar
        //  to Matrix Chain Multiplication DP solution (See
        // cl is length of substring
        for (cl = 2; cl <= n; cl++)
        {
            for (i = 0; i < n -cl + 1; i++)
            {
                j = i + cl - 1;
                if (seq[i] == seq[j] && cl == 2)
                    L[i][j] = 2;
                else if (seq[i] == seq[j])
                    L[i][j] = L[i + 1][j - 1] + 2;
                else
                    L[i][j] = max(L[i][j - 1], L[i + 1][j]);
            }
        }
              
        return L[0][n - 1];
}
 
 /* Driver program to test above functions */
let seq = "GEEKS FOR GEEKS";
let n = seq.length;
document.write("The length of the lps is "+ lps(seq));
 
// This code is contributed by rag2127
</script>

Output: 
 

The length of the LPS is 7

Time Complexity of the above implementation is O(n^2) which is much better than the worst-case time complexity of Naive Recursive implementation.
 

Print Longest Palindromic Subsequence 
Longest palindrome subsequence with O(n) space
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
References: 
http://users.eecs.northwestern.edu/~dda902/336/hw6-sol.pdf
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :