Related Articles

# Longest palindromic string possible after removal of a substring

• Last Updated : 13 Aug, 2021

Given a string str, the task is to find the longest palindromic string that can be obtained from it after removing a substring.

Examples:

Input: str = “abcdefghiedcba”
Output: “abcdeiedcba”
Explanation: Removal of substring “fgh” leaves the remaining string palindromic

Input: str = “abba”
Output: “abba”
Explanation: Removal of substring “” as the given string is already palindromic.

Approach:

• Find the longest possible pair of substrings A and B from both ends of the given string which are reverse of each other.
• Remove them from the original string.
• Find the longest palindromic substrings from both ends of the remaining string using KMP and consider the substring which is longer.
• Add the strings A and B to beginning and end of this palindromic substring respectively to get the desired output.

Below code is the implementation of the above approach:

## C++

 `// C++ Implementation of the``// above approach``#include ``using` `namespace` `std;``// Function to find the longest palindrome``// from the start of the string using KMP match``string findPalindrome(string C)``{``    ``string S = C;``    ``reverse(S.begin(), S.end());``    ``// Append S(reverse of C)  to C``    ``C = C + ``"&"` `+ S;``    ``int` `n = C.length();``    ``int` `longestPalindrome[n];``    ``longestPalindrome = 0;``    ``int` `len = 0;``    ``int` `i = 1;``    ``// Use KMP algorithm``    ``while` `(i < n) {``        ``if` `(C[i] == C[len]) {``            ``len++;``            ``longestPalindrome[i] = len;``            ``i++;``        ``}``        ``else` `{``            ``if` `(len != 0) {``                ``len = longestPalindrome[len - 1];``            ``}``            ``else` `{``                ``longestPalindrome[i] = 0;``                ``i++;``            ``}``        ``}``    ``}``    ``string ans = C.substr(0, longestPalindrome[n - 1]);``    ``return` `ans;``}` `// Function to return longest palindromic``// string possible from the given string``// after removal of any substring``string findAns(string s)``{``    ``// Initialize three strings A, B AND F``    ``string A = ``""``;``    ``string B = ``""``;``    ``string F = ``""``;` `    ``int` `i = 0;``    ``int` `j = s.length() - 1;``    ``int` `len = s.length();``    ` `    ``// Loop to find longest substrings``    ``// from both ends which are``    ``// reverse of each other``    ``while` `(i < j && s[i] == s[j]) {``        ``i = i + 1;``        ``j = j - 1;``    ``}``    ` `    ``if` `(i > 0)``    ``{``        ``A = s.substr(0, i);``        ``B = s.substr(len - i, i);``    ``}`` ` `    ``// Proceed to third step of our approach``    ``if` `(len > 2 * i)``    ``{``        ``// Remove the substrings A and B``        ``string C = s.substr(i, s.length() - 2 * i);``        ``// Find the longest palindromic``        ``// substring from beginning of C``        ``string D = findPalindrome(C);``        ` `        ``// Find the longest palindromic``        ``// substring from end of C``        ``reverse(C.begin(), C.end());``        ``string E = findPalindrome(C);``        ` `        ``// Store the maximum of D and E in F``        ``if` `(D.length() > E.length()) {``            ``F = D;``        ``}``        ``else` `{``            ``F = E;``        ``}``    ``}``    ` `    ``// Find the final answer``    ``string answer = A + F + B;``    ` `    ``return` `answer;``}``// Driver Code``int` `main()``{``    ``string str = ``"abcdefghiedcba"``;``    ``cout << findAns(str) << endl;`` ` `}`

## Java

 `// Java Implementation of the``// above approach``import` `java.util.*;` `class` `GFG{``    ` `// Function to find the longest palindrome``// from the start of the String using KMP match``static` `String findPalindrome(String C)``{``    ``String S = C;``    ``S = reverse(S);``    ` `    ``// Append S(reverse of C) to C``    ``C = C + ``"&"` `+ S;``    ``int` `n = C.length();``    ``int` `[]longestPalindrome = ``new` `int``[n];``    ``longestPalindrome[``0``] = ``0``;``    ``int` `len = ``0``;``    ``int` `i = ``1``;``    ` `    ``// Use KMP algorithm``    ``while` `(i < n) {``        ``if` `(C.charAt(i) == C.charAt(len)) {``            ``len++;``            ``longestPalindrome[i] = len;``            ``i++;``        ``}``        ``else` `{``            ``if` `(len != ``0``) {``                ``len = longestPalindrome[len - ``1``];``            ``}``            ``else` `{``                ``longestPalindrome[i] = ``0``;``                ``i++;``            ``}``        ``}``    ``}``    ``String ans = C.substring(``0``, longestPalindrome[n - ``1``]);``    ``return` `ans;``}` `// Function to return longest palindromic``// String possible from the given String``// after removal of any subString``static` `String findAns(String s)``{``    ``// Initialize three Strings A, B AND F``    ``String A = ``""``;``    ``String B = ``""``;``    ``String F = ``""``;` `    ``int` `i = ``0``;``    ``int` `j = s.length() - ``1``;``    ``int` `len = s.length();``    ` `    ``// Loop to find longest subStrings``    ``// from both ends which are``    ``// reverse of each other``    ``while` `(i < j && s.charAt(i) == s.charAt(j)) {``        ``i = i + ``1``;``        ``j = j - ``1``;``    ``}``    ` `    ``if` `(i > ``0``)``    ``{``        ``A = s.substring(``0``, i);``        ``B = s.substring(len - i, len);``    ``}` `    ``// Proceed to third step of our approach``    ``if` `(len > ``2` `* i)``    ``{``        ``// Remove the subStrings A and B``        ``String C = s.substring(i, (s.length() - ``2` `* i) + i);``        ` `        ``// Find the longest palindromic``        ``// subString from beginning of C``        ``String D = findPalindrome(C);``        ` `        ``// Find the longest palindromic``        ``// subString from end of C``        ``C = reverse(C);``        ``String E = findPalindrome(C);``        ` `        ``// Store the maximum of D and E in F``        ``if` `(D.length() > E.length()) {``            ``F = D;``        ``}``        ``else` `{``            ``F = E;``        ``}``    ``}``    ` `    ``// Find the final answer``    ``String answer = A + F + B;``    ` `    ``return` `answer;``}``static` `String reverse(String input) {``    ``char``[] a = input.toCharArray();``    ``int` `l, r = a.length - ``1``;``    ``for` `(l = ``0``; l < r; l++, r--) {``        ``char` `temp = a[l];``        ``a[l] = a[r];``        ``a[r] = temp;``    ``}``    ``return` `String.valueOf(a);``}` `// Driver Code``public` `static` `void` `main(String[] args)``{``    ``String str = ``"abcdefghiedcba"``;``    ``System.out.print(findAns(str) +``"\n"``);``}``}` `// This code is contributed by PrinciRaj1992`

## Python3

 `# Python3 implementation of the``# above approach` `# Function to find the longest``# palindrome from the start of``# the string using KMP match``def` `findPalindrome(C):``    ` `    ``S ``=` `C[::``-``1``]``    ` `    ``# Append S(reverse of C)  to C``    ``C ``=` `C[:] ``+` `'&'` `+` `S``    ` `    ``n ``=` `len``(C)``    ``longestPalindrome ``=` `[``0` `for` `i ``in` `range``(n)]``    ``longestPalindrome[``0``] ``=` `0``    ` `    ``ll ``=` `0``    ``i ``=` `1``    ` `    ``# Use KMP algorithm``    ``while` `(i < n):``        ``if` `(C[i] ``=``=` `C[ll]):``            ``ll ``+``=` `1``            ``longestPalindrome[i] ``=` `ll``            ``i ``+``=` `1``        ` `        ``else``:``            ` `            ``if` `(ll !``=` `0``):``                ``ll ``=` `longestPalindrome[ll ``-` `1``]``            ``else``:``                ``longestPalindrome[i] ``=` `0``                ``i ``+``=` `1``            ` `    ``ans ``=` `C[``0``:longestPalindrome[n ``-` `1``]]``    ` `    ``return` `ans` `# Function to return longest palindromic``# string possible from the given string``# after removal of any substring``def` `findAns(s):` `    ``# Initialize three strings``    ``# A, B AND F``    ``A ``=` `""``    ``B ``=` `""``    ``F ``=` `""``  ` `    ``i ``=` `0``    ``j ``=` `len``(s) ``-` `1``    ``ll ``=` `len``(s)``      ` `    ``# Loop to find longest substrings``    ``# from both ends which are ``    ``# reverse of each other``    ``while` `(i < j ``and` `s[i] ``=``=` `s[j]):``        ``i ``=` `i ``+` `1``        ``j ``=` `j ``-` `1``    ` `    ``if` `(i > ``0``):``        ``A ``=` `s[``0` `: i]``        ``B ``=` `s[ll ``-` `i : ll]``     ` `    ``# Proceed to third step of our approach``    ``if` `(ll > ``2` `*` `i): ``    ` `        ``# Remove the substrings A and B``        ``C ``=` `s[i : i ``+` `(``len``(s) ``-` `2` `*` `i)]``        ` `        ``# Find the longest palindromic``        ``# substring from beginning of C``        ``D ``=` `findPalindrome(C)``          ` `        ``# Find the longest palindromic``        ``# substring from end of C``        ``C ``=` `C[::``-``1``]``        ` `        ``E ``=` `findPalindrome(C)``          ` `        ``# Store the maximum of D and E in F``        ``if` `(``len``(D) > ``len``(E)):``            ``F ``=` `D``        ``else``:``            ``F ``=` `E``    ` `    ``# Find the final answer``    ``answer ``=` `A ``+` `F ``+` `B``      ` `    ``return` `answer` `# Driver code``if` `__name__``=``=``"__main__"``:``    ` `    ``str` `=` `"abcdefghiedcba"``    ` `    ``print``(findAns(``str``))` `# This code is contributed by rutvik_56`

## C#

 `// C# Implementation of the``// above approach``using` `System;` `class` `GFG{``     ` `// Function to find the longest palindrome``// from the start of the String using KMP match``static` `String findPalindrome(String C)``{``    ``String S = C;``    ``S = reverse(S);``     ` `    ``// Append S(reverse of C) to C``    ``C = C + ``"&"` `+ S;``    ``int` `n = C.Length;``    ``int` `[]longestPalindrome = ``new` `int``[n];``    ``longestPalindrome = 0;``    ``int` `len = 0;``    ``int` `i = 1;``     ` `    ``// Use KMP algorithm``    ``while` `(i < n) {``        ``if` `(C[i] == C[len]) {``            ``len++;``            ``longestPalindrome[i] = len;``            ``i++;``        ``}``        ``else` `{``            ``if` `(len != 0) {``                ``len = longestPalindrome[len - 1];``            ``}``            ``else` `{``                ``longestPalindrome[i] = 0;``                ``i++;``            ``}``        ``}``    ``}``    ``String ans = C.Substring(0, longestPalindrome[n - 1]);``    ``return` `ans;``}`` ` `// Function to return longest palindromic``// String possible from the given String``// after removal of any subString``static` `String findAns(String s)``{``    ``// Initialize three Strings A, B AND F``    ``String A = ``""``;``    ``String B = ``""``;``    ``String F = ``""``;`` ` `    ``int` `i = 0;``    ``int` `j = s.Length - 1;``    ``int` `len = s.Length;``     ` `    ``// Loop to find longest subStrings``    ``// from both ends which are``    ``// reverse of each other``    ``while` `(i < j && s[i] == s[j]) {``        ``i = i + 1;``        ``j = j - 1;``    ``}``     ` `    ``if` `(i > 0)``    ``{``        ``A = s.Substring(0, i);``        ``B = s.Substring(len - i, i);``    ``}`` ` `    ``// Proceed to third step of our approach``    ``if` `(len > 2 * i)``    ``{``        ``// Remove the subStrings A and B``        ``String C = s.Substring(i, (s.Length - 2 * i));``         ` `        ``// Find the longest palindromic``        ``// subString from beginning of C``        ``String D = findPalindrome(C);``         ` `        ``// Find the longest palindromic``        ``// subString from end of C``        ``C = reverse(C);``        ``String E = findPalindrome(C);``         ` `        ``// Store the maximum of D and E in F``        ``if` `(D.Length > E.Length) {``            ``F = D;``        ``}``        ``else` `{``            ``F = E;``        ``}``    ``}``     ` `    ``// Find the readonly answer``    ``String answer = A + F + B;``     ` `    ``return` `answer;``}``static` `String reverse(String input) {``    ``char``[] a = input.ToCharArray();``    ``int` `l, r = a.Length - 1;``    ``for` `(l = 0; l < r; l++, r--) {``        ``char` `temp = a[l];``        ``a[l] = a[r];``        ``a[r] = temp;``    ``}``    ``return` `String.Join(``""``,a);``}`` ` `// Driver Code``public` `static` `void` `Main(String[] args)``{``    ``String str = ``"abcdefghiedcba"``;``    ``Console.Write(findAns(str) +``"\n"``);``}``}` `// This code is contributed by Rajput-Ji`

## Javascript

 ``
Output:
`abcdeiedcba`

Time complexity: O(N)
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up