Given an array containing n numbers. The problem is to find the length of the longest contiguous subarray such that every element in the subarray is strictly greater than its previous element in the same subarray. Time Complexity should be O(n).
Examples:
Input : arr[] = {5, 6, 3, 5, 7, 8, 9, 1, 2} Output : 5 The subarray is {3, 5, 7, 8, 9} Input : arr[] = {12, 13, 1, 5, 4, 7, 8, 10, 10, 11} Output : 4 The subarray is {4, 7, 8, 10}
Algorithm:
lenOfLongIncSubArr(arr, n) Declare max = 1, len = 1 for i = 1 to n-1 if arr[i] > arr[i-1] len++ else if max < len max = len len = 1 if max < len max = len return max
C++
// C++ implementation to find the length of // longest increasing contiguous subarray #include <bits/stdc++.h> using namespace std; // function to find the length of longest increasing // contiguous subarray int lenOfLongIncSubArr( int arr[], int n) { // 'max' to store the length of longest // increasing subarray // 'len' to store the lengths of longest // increasing subarray at diiferent // instants of time int max = 1, len = 1; // traverse the array from the 2nd element for ( int i=1; i<n; i++) { // if current element if greater than previous // element, then this element helps in building // up the previous increasing subarray encountered // so far if (arr[i] > arr[i-1]) len++; else { // check if 'max' length is less than the length // of the current increasing subarray. If true, // then update 'max' if (max < len) max = len; // reset 'len' to 1 as from this element // again the length of the new increasing // subarray is being calculated len = 1; } } // comparing the length of the last // increasing subarray with 'max' if (max < len) max = len; // required maximum length return max; } // Driver program to test above int main() { int arr[] = {5, 6, 3, 5, 7, 8, 9, 1, 2}; int n = sizeof (arr) / sizeof (arr[0]); cout << "Length = " << lenOfLongIncSubArr(arr, n); return 0; } |
Java
// JAVA Code to find length of // Longest increasing subarray import java.util.*; class GFG { // function to find the length of longest // increasing contiguous subarray public static int lenOfLongIncSubArr( int arr[], int n) { // 'max' to store the length of longest // increasing subarray // 'len' to store the lengths of longest // increasing subarray at diiferent // instants of time int max = 1 , len = 1 ; // traverse the array from the 2nd element for ( int i= 1 ; i<n; i++) { // if current element if greater than // previous element, then this element // helps in building up the previous // increasing subarray encountered // so far if (arr[i] > arr[i- 1 ]) len++; else { // check if 'max' length is less // than the length of the current // increasing subarray. If true, // than update 'max' if (max < len) max = len; // reset 'len' to 1 as from this // element again the length of the // new increasing subarray is being // calculated len = 1 ; } } // comparing the length of the last // increasing subarray with 'max' if (max < len) max = len; // required maximum length return max; } /* Driver program to test above function */ public static void main(String[] args) { int arr[] = { 5 , 6 , 3 , 5 , 7 , 8 , 9 , 1 , 2 }; int n = arr.length; System.out.println( "Length = " + lenOfLongIncSubArr(arr, n)); } } // This code is contributed by Arnav Kr. Mandal. |
Python3
# Python 3 implementation to find the length of # longest increasing contiguous subarray # function to find the length of longest # increasing contiguous subarray def lenOfLongIncSubArr(arr, n) : # 'max' to store the length of longest # increasing subarray # 'len' to store the lengths of longest # increasing subarray at diiferent # instants of time m = 1 l = 1 # traverse the array from the 2nd element for i in range ( 1 , n) : # if current element if greater than previous # element, then this element helps in building # up the previous increasing subarray encountered # so far if (arr[i] > arr[i - 1 ]) : l = l + 1 else : # check if 'max' length is less than the length # of the current increasing subarray. If true, # then update 'max' if (m < l) : m = l # reset 'len' to 1 as from this element # again the length of the new increasing # subarray is being calculated l = 1 # comparing the length of the last # increasing subarray with 'max' if (m < l) : m = l # required maximum length return m # Driver program to test above arr = [ 5 , 6 , 3 , 5 , 7 , 8 , 9 , 1 , 2 ] n = len (arr) print ( "Length = " , lenOfLongIncSubArr(arr, n)) # This code is contributed # by Nikita Tiwari. |
C#
// C# Code to find length of // Longest increasing subarray using System; class GFG { // function to find the length of longest // increasing contiguous subarray public static int lenOfLongIncSubArr( int [] arr, int n) { // 'max' to store the length of longest // increasing subarray // 'len' to store the lengths of longest // increasing subarray at diiferent // instants of time int max = 1, len = 1; // traverse the array from the 2nd element for ( int i = 1; i < n; i++) { // if current element if greater than // previous element, then this element // helps in building up the previous // increasing subarray encountered // so far if (arr[i] > arr[i - 1]) len++; else { // check if 'max' length is less // than the length of the current // increasing subarray. If true, // than update 'max' if (max < len) max = len; // reset 'len' to 1 as from this // element again the length of the // new increasing subarray is being // calculated len = 1; } } // comparing the length of the last // increasing subarray with 'max' if (max < len) max = len; // required maximum length return max; } /* Driver program to test above function */ public static void Main() { int [] arr = { 5, 6, 3, 5, 7, 8, 9, 1, 2 }; int n = arr.Length; Console.WriteLine( "Length = " + lenOfLongIncSubArr(arr, n)); } } // This code is contributed by Sam007 |
PHP
<?php // PHP implementation to find the length of // longest increasing contiguous subarray // function to find the length of // longest increasing contiguous // subarray function lenOfLongIncSubArr( $arr , $n ) { // 'max' to store the length of longest // increasing subarray // 'len' to store the lengths of longest // increasing subarray at diiferent // instants of time $max = 1; $len = 1; // traverse the array from // the 2nd element for ( $i = 1; $i < $n ; $i ++) { // if current element if // greater than previous // element, then this element // helps in building up the // previous increasing subarray // encountered so far if ( $arr [ $i ] > $arr [ $i -1]) $len ++; else { // check if 'max' length is // less than the length // of the current increasing // subarray. If true, // then update 'max' if ( $max < $len ) $max = $len ; // reset 'len' to 1 as // from this element // again the length of // the new increasing // subarray is being // calculated $len = 1; } } // comparing the length of the last // increasing subarray with 'max' if ( $max < $len ) $max = $len ; // required maximum length return $max ; } // Driver Code $arr = array (5, 6, 3, 5, 7, 8, 9, 1, 2); $n = sizeof( $arr ); echo "Length = " , lenOfLongIncSubArr( $arr , $n ); // This code is contributed by nitin mittal. ?> |
Output:
Length = 5
Time Complexity: O(n)
How to print the subarray?
We can print the subarray by keeping track of index with largest length.
C++
// C++ implementation to find the length of // longest increasing contiguous subarray #include <bits/stdc++.h> using namespace std; // function to find the length of longest increasing // contiguous subarray void printLogestIncSubArr( int arr[], int n) { // 'max' to store the length of longest // increasing subarray // 'len' to store the lengths of longest // increasing subarray at diiferent // instants of time int max = 1, len = 1, maxIndex = 0; // traverse the array from the 2nd element for ( int i=1; i<n; i++) { // if current element if greater than previous // element, then this element helps in building // up the previous increasing subarray encountered // so far if (arr[i] > arr[i-1]) len++; else { // check if 'max' length is less than the length // of the current increasing subarray. If true, // then update 'max' if (max < len) { max = len; // index assign the starting index of // longest increasing contiguous subarray. maxIndex = i - max; } // reset 'len' to 1 as from this element // again the length of the new increasing // subarray is being calculated len = 1; } } // comparing the length of the last // increasing subarray with 'max' if (max < len) { max = len; maxIndex = n - max; } // Print the elements of longest increasing // contiguous subarray. for ( int i=maxIndex; i<max+maxIndex; i++) cout << arr[i] << " " ; } // Driver program to test above int main() { int arr[] = {5, 6, 3, 5, 7, 8, 9, 1, 2}; int n = sizeof (arr) / sizeof (arr[0]); printLogestIncSubArr(arr, n); return 0; } // This code is contributed by Dharmendra kumar |
Java
// JAVA Code For Longest increasing subarray import java.util.*; class GFG { // function to find the length of longest // increasing contiguous subarray public static void printLogestIncSubArr( int arr[], int n) { // 'max' to store the length of longest // increasing subarray // 'len' to store the lengths of longest // increasing subarray at diiferent // instants of time int max = 1 , len = 1 , maxIndex = 0 ; // traverse the array from the 2nd element for ( int i = 1 ; i < n; i++) { // if current element if greater than // previous element, then this element // helps in building up the previous // increasing subarray encountered // so far if (arr[i] > arr[i- 1 ]) len++; else { // check if 'max' length is less // than the length of the current // increasing subarray. If true, // then update 'max' if (max < len) { max = len; // index assign the starting // index of longest increasing // contiguous subarray. maxIndex = i - max; } // reset 'len' to 1 as from this // element again the length of the // new increasing subarray is // being calculated len = 1 ; } } // comparing the length of the last // increasing subarray with 'max' if (max < len) { max = len; maxIndex = n - max; } // Print the elements of longest // increasing contiguous subarray. for ( int i = maxIndex; i < max+maxIndex; i++) System.out.print(arr[i] + " " ); } /* Driver program to test above function */ public static void main(String[] args) { int arr[] = { 5 , 6 , 3 , 5 , 7 , 8 , 9 , 1 , 2 }; int n = arr.length; printLogestIncSubArr(arr, n); } } // This code is contributed by Arnav Kr. Mandal. |
Python3
# Python 3 implementation to find the length of # longest increasing contiguous subarray # function to find the length of longest increasing # contiguous subarray def printLogestIncSubArr( arr, n) : # 'max' to store the length of longest # increasing subarray # 'len' to store the lengths of longest # increasing subarray at diiferent # instants of time m = 1 l = 1 maxIndex = 0 # traverse the array from the 2nd element for i in range ( 1 , n) : # if current element if greater than previous # element, then this element helps in building # up the previous increasing subarray # encountered so far if (arr[i] > arr[i - 1 ]) : l = l + 1 else : # check if 'max' length is less than the length # of the current increasing subarray. If true, # then update 'max' if (m < l) : m = l # index assign the starting index of # longest increasing contiguous subarray. maxIndex = i - m # reset 'len' to 1 as from this element # again the length of the new increasing # subarray is being calculated l = 1 # comparing the length of the last # increasing subarray with 'max' if (m < l) : m = l maxIndex = n - m # Print the elements of longest # increasing contiguous subarray. for i in range (maxIndex, (m + maxIndex)) : print (arr[i] , end = " " ) # Driver program to test above arr = [ 5 , 6 , 3 , 5 , 7 , 8 , 9 , 1 , 2 ] n = len (arr) printLogestIncSubArr(arr, n) # This code is contributed # by Nikita Tiwari |
C#
// C# Code to print // Longest increasing subarray using System; class GFG { // function to find the length of longest // increasing contiguous subarray public static void printLogestIncSubArr( int [] arr, int n) { // 'max' to store the length of longest // increasing subarray // 'len' to store the lengths of longest // increasing subarray at diiferent // instants of time int max = 1, len = 1, maxIndex = 0; // traverse the array from the 2nd element for ( int i = 1; i < n; i++) { // if current element if greater than // previous element, then this element // helps in building up the previous // increasing subarray encountered // so far if (arr[i] > arr[i - 1]) len++; else { // check if 'max' length is less // than the length of the current // increasing subarray. If true, // then update 'max' if (max < len) { max = len; // index assign the starting // index of longest increasing // contiguous subarray. maxIndex = i - max; } // reset 'len' to 1 as from this // element again the length of the // new increasing subarray is // being calculated len = 1; } } // comparing the length of the last // increasing subarray with 'max' if (max < len) { max = len; maxIndex = n - max; } // Print the elements of longest // increasing contiguous subarray. for ( int i = maxIndex; i < max + maxIndex; i++) Console.Write(arr[i] + " " ); } /* Driver program to test above function */ public static void Main() { int [] arr = { 5, 6, 3, 5, 7, 8, 9, 1, 2 }; int n = arr.Length; printLogestIncSubArr(arr, n); } } // This code is contributed by Sam007 |
PHP
<?php // PHP implementation to find // the length of longest increasing // contiguous subarray // function to find the length of // longest increasing contiguous subarray function printLogestIncSubArr(& $arr , $n ) { // 'max' to store the length of // longest increasing subarray // 'len' to store the lengths of // longest increasing subarray at // diiferent instants of time $max = 1; $len = 1; $maxIndex = 0; // traverse the array from // the 2nd element for ( $i = 1; $i < $n ; $i ++) { // if current element if greater // than previous element, then // this element helps in building // up the previous increasing // subarray encountered so far if ( $arr [ $i ] > $arr [ $i - 1]) $len ++; else { // check if 'max' length is less // than the length of the current // increasing subarray. If true, // then update 'max' if ( $max < $len ) { $max = $len ; // index assign the starting // index of longest increasing // contiguous subarray. $maxIndex = $i - $max ; } // reset 'len' to 1 as from this // element again the length of // the new increasing subarray // is being calculated $len = 1; } } // comparing the length of // the last increasing // subarray with 'max' if ( $max < $len ) { $max = $len ; $maxIndex = $n - $max ; } // Print the elements of // longest increasing // contiguous subarray. for ( $i = $maxIndex ; $i < ( $max + $maxIndex ); $i ++) echo ( $arr [ $i ] . " " ) ; } // Driver Code $arr = array (5, 6, 3, 5, 7, 8, 9, 1, 2); $n = sizeof( $arr ); printLogestIncSubArr( $arr , $n ); // This code is contributed // by Shivi_Aggarwal ?> |
Output:
3 5 7 8 9
This article is contributed by Ayush Jauhari. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.