Given an array containing n numbers. The problem is to find the length of the longest contiguous subarray such that every element in the subarray is strictly greater than its previous element in the same subarray. Time Complexity should be O(n).
Examples:
Input : arr[] = {5, 6, 3, 5, 7, 8, 9, 1, 2}
Output : 5
The subarray is {3, 5, 7, 8, 9}
Input : arr[] = {12, 13, 1, 5, 4, 7, 8, 10, 10, 11}
Output : 4
The subarray is {4, 7, 8, 10}
Algorithm:
lenOfLongIncSubArr(arr, n)
Declare max = 1, len = 1
for i = 1 to n-1
if arr[i] > arr[i-1]
len++
else
if max < len
max = len
len = 1
if max < len
max = len
return max
Implementation:
C++
#include <bits/stdc++.h>
using namespace std;
int lenOfLongIncSubArr( int arr[], int n)
{
int max = 1, len = 1;
for ( int i=1; i<n; i++)
{
if (arr[i] > arr[i-1])
len++;
else
{
if (max < len)
max = len;
len = 1;
}
}
if (max < len)
max = len;
return max;
}
int main()
{
int arr[] = {5, 6, 3, 5, 7, 8, 9, 1, 2};
int n = sizeof (arr) / sizeof (arr[0]);
cout << "Length = "
<< lenOfLongIncSubArr(arr, n);
return 0;
}
|
Java
import java.util.*;
class GFG {
public static int lenOfLongIncSubArr( int arr[],
int n)
{
int max = 1 , len = 1 ;
for ( int i= 1 ; i<n; i++)
{
if (arr[i] > arr[i- 1 ])
len++;
else
{
if (max < len)
max = len;
len = 1 ;
}
}
if (max < len)
max = len;
return max;
}
public static void main(String[] args)
{
int arr[] = { 5 , 6 , 3 , 5 , 7 , 8 , 9 , 1 , 2 };
int n = arr.length;
System.out.println( "Length = " +
lenOfLongIncSubArr(arr, n));
}
}
|
Python3
def lenOfLongIncSubArr(arr, n) :
m = 1
l = 1
for i in range ( 1 , n) :
if (arr[i] > arr[i - 1 ]) :
l = l + 1
else :
if (m < l) :
m = l
l = 1
if (m < l) :
m = l
return m
arr = [ 5 , 6 , 3 , 5 , 7 , 8 , 9 , 1 , 2 ]
n = len (arr)
print ( "Length = " , lenOfLongIncSubArr(arr, n))
|
C#
using System;
class GFG {
public static int lenOfLongIncSubArr( int [] arr,
int n)
{
int max = 1, len = 1;
for ( int i = 1; i < n; i++) {
if (arr[i] > arr[i - 1])
len++;
else {
if (max < len)
max = len;
len = 1;
}
}
if (max < len)
max = len;
return max;
}
public static void Main()
{
int [] arr = { 5, 6, 3, 5, 7, 8, 9, 1, 2 };
int n = arr.Length;
Console.WriteLine( "Length = " +
lenOfLongIncSubArr(arr, n));
}
}
|
PHP
<?php
function lenOfLongIncSubArr( $arr , $n )
{
$max = 1;
$len = 1;
for ( $i = 1; $i < $n ; $i ++)
{
if ( $arr [ $i ] > $arr [ $i -1])
$len ++;
else
{
if ( $max < $len )
$max = $len ;
$len = 1;
}
}
if ( $max < $len )
$max = $len ;
return $max ;
}
$arr = array (5, 6, 3, 5, 7, 8, 9, 1, 2);
$n = sizeof( $arr );
echo "Length = " , lenOfLongIncSubArr( $arr , $n );
?>
|
Javascript
<script>
function lenOfLongIncSubArr(arr, n)
{
var max = 1, len = 1;
for ( var i=1; i<n; i++)
{
if (arr[i] > arr[i-1])
len++;
else
{
if (max < len)
{
max = len;
}
len = 1;
}
}
if (max < len)
{
max = len;
}
return max;
}
var arr = [5, 6, 3, 5, 7, 8, 9, 1, 2];
var n = arr.length;
document.write( "Length = " + lenOfLongIncSubArr(arr, n));
</script>
|
Time Complexity: O(n)
Auxiliary Space: O(1)
How to print the subarray?
We can print the subarray by keeping track of the index with the largest length.
Implementation:
C++
#include <bits/stdc++.h>
using namespace std;
void printLongestIncSubArr( int arr[], int n)
{
int max = 1, len = 1, maxIndex = 0;
for ( int i=1; i<n; i++)
{
if (arr[i] > arr[i-1])
len++;
else
{
if (max < len)
{
max = len;
maxIndex = i - max;
}
len = 1;
}
}
if (max < len)
{
max = len;
maxIndex = n - max;
}
for ( int i=maxIndex; i<max+maxIndex; i++)
cout << arr[i] << " " ;
}
int main()
{
int arr[] = {5, 6, 3, 5, 7, 8, 9, 1, 2};
int n = sizeof (arr) / sizeof (arr[0]);
printLongestIncSubArr(arr, n);
return 0;
}
|
Java
import java.util.*;
class GFG {
public static void printLongestIncSubArr( int arr[],
int n)
{
int max = 1 , len = 1 , maxIndex = 0 ;
for ( int i = 1 ; i < n; i++)
{
if (arr[i] > arr[i- 1 ])
len++;
else
{
if (max < len)
{
max = len;
maxIndex = i - max;
}
len = 1 ;
}
}
if (max < len)
{
max = len;
maxIndex = n - max;
}
for ( int i = maxIndex; i < max+maxIndex; i++)
System.out.print(arr[i] + " " );
}
public static void main(String[] args)
{
int arr[] = { 5 , 6 , 3 , 5 , 7 , 8 , 9 , 1 , 2 };
int n = arr.length;
printLongestIncSubArr(arr, n);
}
}
|
Python3
def printLongestIncSubArr( arr, n) :
m = 1
l = 1
maxIndex = 0
for i in range ( 1 , n) :
if (arr[i] > arr[i - 1 ]) :
l = l + 1
else :
if (m < l) :
m = l
maxIndex = i - m
l = 1
if (m < l) :
m = l
maxIndex = n - m
for i in range (maxIndex, (m + maxIndex)) :
print (arr[i] , end = " " )
arr = [ 5 , 6 , 3 , 5 , 7 , 8 , 9 , 1 , 2 ]
n = len (arr)
printLongestIncSubArr(arr, n)
|
C#
using System;
class GFG {
public static void printLongestIncSubArr( int [] arr,
int n)
{
int max = 1, len = 1, maxIndex = 0;
for ( int i = 1; i < n; i++) {
if (arr[i] > arr[i - 1])
len++;
else
{
if (max < len) {
max = len;
maxIndex = i - max;
}
len = 1;
}
}
if (max < len) {
max = len;
maxIndex = n - max;
}
for ( int i = maxIndex; i < max + maxIndex; i++)
Console.Write(arr[i] + " " );
}
public static void Main()
{
int [] arr = { 5, 6, 3, 5, 7, 8, 9, 1, 2 };
int n = arr.Length;
printLongestIncSubArr(arr, n);
}
}
|
PHP
<?php
function printLongestIncSubArr(& $arr , $n )
{
$max = 1;
$len = 1;
$maxIndex = 0;
for ( $i = 1; $i < $n ; $i ++)
{
if ( $arr [ $i ] > $arr [ $i - 1])
$len ++;
else
{
if ( $max < $len )
{
$max = $len ;
$maxIndex = $i - $max ;
}
$len = 1;
}
}
if ( $max < $len )
{
$max = $len ;
$maxIndex = $n - $max ;
}
for ( $i = $maxIndex ;
$i < ( $max + $maxIndex ); $i ++)
echo ( $arr [ $i ] . " " ) ;
}
$arr = array (5, 6, 3, 5, 7,
8, 9, 1, 2);
$n = sizeof( $arr );
printLongestIncSubArr( $arr , $n );
?>
|
Javascript
<script>
function printLongestIncSubArr(arr, n)
{
var max = 1, len = 1, maxIndex = 0;
for ( var i=1; i<n; i++)
{
if (arr[i] > arr[i-1])
len++;
else
{
if (max < len)
{
max = len;
maxIndex = i - max;
}
len = 1;
}
}
if (max < len)
{
max = len;
maxIndex = n - max;
}
for ( var i=maxIndex; i<max+maxIndex; i++)
document.write( arr[i] + " " );
}
var arr = [5, 6, 3, 5, 7, 8, 9, 1, 2];
var n = arr.length;
printLongestIncSubArr(arr, n);
</script>
|
Time Complexity: O(N) where N is the number of elements in the array.
Auxiliary Space: O(1)
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
07 Feb, 2023
Like Article
Save Article