Related Articles

Related Articles

log10() function for complex number in C++
  • Last Updated : 11 Oct, 2018

The log10() function for complex number is defined in the complex header file. This function is the complex version of the log10() function. This function is used to calculate the complex common log of a complex number z i.e with base 10 and returns the common log of complex number z.

Syntax:

template<class T> complex<T> 
       log10 (const complex<T>& z );

Parameter: This method takes a mandatory parameter z which represents the complex number.

Return value: This function returns the common log of complex number z.

Below programs illustrate the log10() function in C++:



Example 1:-

filter_none

edit
close

play_arrow

link
brightness_4
code

// c++ program to demonstrate
// example of log10() function.
  
#include <bits/stdc++.h>
using namespace std;
  
// driver program
int main()
{
    // initializing the complex: (-1.0+0.0i)
    complex<double> complexnumber(-1.0, 0.0);
  
    // use of log10() function for complex number
    cout << "The log10 of "
         << complexnumber
         << " is "
         << log10(complexnumber)
         << endl;
  
    return 0;
}

chevron_right


Output:

The log10 of (-1,0) is (0,1.36438)

Example 2:-

filter_none

edit
close

play_arrow

link
brightness_4
code

// c++ program to demonstrate
// example of log10() function.
  
#include <bits/stdc++.h>
using namespace std;
  
// driver program
int main()
{
    // initializing the complex: (-1.0 + -0.0i)
    complex<double> complexnumber(-1.0, -0.0);
  
    // use of log10() function for complex number
    cout << "The log10 of "
         << complexnumber
         << " is "
         << log10(complexnumber)
         << endl;
  
    return 0;
}

chevron_right


Output:

The log10 of (-1,-0) is (0,-1.36438)

Rated as one of the most sought after skills in the industry, own the basics of coding with our C++ STL Course and master the very concepts by intense problem-solving.




My Personal Notes arrow_drop_up
Recommended Articles
Page :