A complete binary tree is a binary tree where each level ‘l’ except the last has 2^l nodes and the nodes at the last level are all left-aligned. Complete binary trees are mainly used in heap-based data structures.
The nodes in the complete binary tree are inserted from left to right in one level at a time. If a level is full, the node is inserted in a new level.
Below are some complete binary trees.
1 / \ 2 3 1 / \ 2 3 / \ / 4 5 6
Below binary trees are not complete:
1 / \ 2 3 / / 4 5 1 / \ 2 3 / \ / 4 5 6 / 7
Complete binary trees are generally represented using arrays. The array representation is better because it doesn’t contain any empty slots. Given parent index i, its left child is given by 2 * i + 1, and its right child is given by 2 * i + 2. So no extra space is wasted and space to store left and right pointers is saved. However, it may be an interesting programming question to create a Complete Binary Tree using linked representation. Here Linked means a non-array representation where the left and right pointers(or references) are used to refer left and right children respectively. How to write an insert function that always adds a new node in the last level and at the leftmost available position?
To create a linked complete binary tree, we need to keep track of the nodes in a level order fashion such that the next node to be inserted lies in the leftmost position. A queue data structure can be used to keep track of the inserted nodes.
The following are steps to insert a new node in Complete Binary Tree.
1. If the tree is empty, initialize the root with a new node.
2. Else, get the front node of the queue.
…….If the left child of this front node doesn’t exist, set the left child as the new node.
…….else if the right child of this front node doesn’t exist, set the right child as the new node.
3. If the front node has both the left child and right child, Dequeue() it.
4. Enqueue() the new node.
Below is the implementation:
C
// Program for linked implementation of complete binary tree #include <stdio.h> #include <stdlib.h> // For Queue Size #define SIZE 50 // A tree node struct node { int data; struct node *right,*left; }; // A queue node struct Queue { int front, rear; int size; struct node* *array; }; // A utility function to create a new tree node struct node* newNode( int data) { struct node* temp = ( struct node*) malloc ( sizeof ( struct node )); temp->data = data; temp->left = temp->right = NULL; return temp; } // A utility function to create a new Queue struct Queue* createQueue( int size) { struct Queue* queue = ( struct Queue*) malloc ( sizeof ( struct Queue )); queue->front = queue->rear = -1; queue->size = size; queue->array = ( struct node**) malloc (queue->size * sizeof ( struct node* )); int i; for (i = 0; i < size; ++i) queue->array[i] = NULL; return queue; } // Standard Queue Functions int isEmpty( struct Queue* queue) { return queue->front == -1; } int isFull( struct Queue* queue) { return queue->rear == queue->size - 1; } int hasOnlyOneItem( struct Queue* queue) { return queue->front == queue->rear; } void Enqueue( struct node *root, struct Queue* queue) { if (isFull(queue)) return ; queue->array[++queue->rear] = root; if (isEmpty(queue)) ++queue->front; } struct node* Dequeue( struct Queue* queue) { if (isEmpty(queue)) return NULL; struct node* temp = queue->array[queue->front]; if (hasOnlyOneItem(queue)) queue->front = queue->rear = -1; else ++queue->front; return temp; } struct node* getFront( struct Queue* queue) { return queue->array[queue->front]; } // A utility function to check if a tree node // has both left and right children int hasBothChild( struct node* temp) { return temp && temp->left && temp->right; } // Function to insert a new node in complete binary tree void insert( struct node **root, int data, struct Queue* queue) { // Create a new node for given data struct node *temp = newNode(data); // If the tree is empty, initialize the root with new node. if (!*root) *root = temp; else { // get the front node of the queue. struct node* front = getFront(queue); // If the left child of this front node doesn’t exist, set the // left child as the new node if (!front->left) front->left = temp; // If the right child of this front node doesn’t exist, set the // right child as the new node else if (!front->right) front->right = temp; // If the front node has both the left child and right child, // Dequeue() it. if (hasBothChild(front)) Dequeue(queue); } // Enqueue() the new node for later insertions Enqueue(temp, queue); } // Standard level order traversal to test above function void levelOrder( struct node* root) { struct Queue* queue = createQueue(SIZE); Enqueue(root, queue); while (!isEmpty(queue)) { struct node* temp = Dequeue(queue); printf ( "%d " , temp->data); if (temp->left) Enqueue(temp->left, queue); if (temp->right) Enqueue(temp->right, queue); } } // Driver program to test above functions int main() { struct node* root = NULL; struct Queue* queue = createQueue(SIZE); int i; for (i = 1; i <= 12; ++i) insert(&root, i, queue); levelOrder(root); return 0; } |
C++
// Program for linked implementation of complete binary tree #include <bits/stdc++.h> using namespace std; // For Queue Size #define SIZE 50 // A tree node class node { public : int data; node *right,*left; }; // A queue node class Queue { public : int front, rear; int size; node**array; }; // A utility function to create a new tree node node* newNode( int data) { node* temp = new node(); temp->data = data; temp->left = temp->right = NULL; return temp; } // A utility function to create a new Queue Queue* createQueue( int size) { Queue* queue = new Queue(); queue->front = queue->rear = -1; queue->size = size; queue->array = new node*[queue->size * sizeof ( node* )]; int i; for (i = 0; i < size; ++i) queue->array[i] = NULL; return queue; } // Standard Queue Functions int isEmpty(Queue* queue) { return queue->front == -1; } int isFull(Queue* queue) { return queue->rear == queue->size - 1; } int hasOnlyOneItem(Queue* queue) { return queue->front == queue->rear; } void Enqueue(node *root, Queue* queue) { if (isFull(queue)) return ; queue->array[++queue->rear] = root; if (isEmpty(queue)) ++queue->front; } node* Dequeue(Queue* queue) { if (isEmpty(queue)) return NULL; node* temp = queue->array[queue->front]; if (hasOnlyOneItem(queue)) queue->front = queue->rear = -1; else ++queue->front; return temp; } node* getFront(Queue* queue) { return queue->array[queue->front]; } // A utility function to check if a tree node // has both left and right children int hasBothChild(node* temp) { return temp && temp->left && temp->right; } // Function to insert a new node in complete binary tree void insert(node **root, int data, Queue* queue) { // Create a new node for given data node *temp = newNode(data); // If the tree is empty, initialize the root with new node. if (!*root) *root = temp; else { // get the front node of the queue. node* front = getFront(queue); // If the left child of this front node doesn’t exist, set the // left child as the new node if (!front->left) front->left = temp; // If the right child of this front node doesn’t exist, set the // right child as the new node else if (!front->right) front->right = temp; // If the front node has both the left child and right child, // Dequeue() it. if (hasBothChild(front)) Dequeue(queue); } // Enqueue() the new node for later insertions Enqueue(temp, queue); } // Standard level order traversal to test above function void levelOrder(node* root) { Queue* queue = createQueue(SIZE); Enqueue(root, queue); while (!isEmpty(queue)) { node* temp = Dequeue(queue); cout<<temp->data<< " " ; if (temp->left) Enqueue(temp->left, queue); if (temp->right) Enqueue(temp->right, queue); } } // Driver program to test above functions int main() { node* root = NULL; Queue* queue = createQueue(SIZE); int i; for (i = 1; i <= 12; ++i) insert(&root, i, queue); levelOrder(root); return 0; } //This code is contributed by rathbhupendra |
Python3
# Program for linked implementation # of complete binary tree # For Queue Size SIZE = 50 # A tree node class node: def __init__( self , data): self .data = data self .right = None self .left = None # A queue node class Queue: def __init__( self ): self .front = None self .rear = None self .size = 0 self .array = [] # A utility function to # create a new tree node def newNode(data): temp = node(data) return temp # A utility function to # create a new Queue def createQueue(size): global queue queue = Queue(); queue.front = queue.rear = - 1 ; queue.size = size; queue.array = [ None for i in range (size)] return queue; # Standard Queue Functions def isEmpty(queue): return queue.front = = - 1 def isFull(queue): return queue.rear = = queue.size - 1 ; def hasOnlyOneItem(queue): return queue.front = = queue.rear; def Enqueue(root): if (isFull(queue)): return ; queue.rear + = 1 queue.array[queue.rear] = root; if (isEmpty(queue)): queue.front + = 1 ; def Dequeue(): if (isEmpty(queue)): return None ; temp = queue.array[queue.front]; if (hasOnlyOneItem(queue)): queue.front = queue.rear = - 1 ; else : queue.front + = 1 return temp; def getFront(queue): return queue.array[queue.front]; # A utility function to check # if a tree node has both left # and right children def hasBothChild(temp): return (temp and temp.left and temp.right); # Function to insert a new # node in complete binary tree def insert(root, data, queue): # Create a new node for # given data temp = newNode(data); # If the tree is empty, # initialize the root # with new node. if not root: root = temp; else : # get the front node of # the queue. front = getFront(queue); # If the left child of this # front node doesn’t exist, # set the left child as the # new node if ( not front.left): front.left = temp; # If the right child of this # front node doesn’t exist, set # the right child as the new node elif ( not front.right): front.right = temp; # If the front node has both the # left child and right child, # Dequeue() it. if (hasBothChild(front)): Dequeue(); # Enqueue() the new node for # later insertions Enqueue(temp); return root # Standard level order # traversal to test above # function def levelOrder(root): queue = createQueue(SIZE); Enqueue(root); while ( not isEmpty(queue)): temp = Dequeue(); print (temp.data, end = ' ' ) if (temp.left): Enqueue(temp.left); if (temp.right): Enqueue(temp.right); # Driver code if __name__ = = "__main__" : root = None queue = createQueue(SIZE); for i in range ( 1 , 13 ): root = insert(root, i, queue); levelOrder(root); # This code is contributed by Rutvik_56 |
1 2 3 4 5 6 7 8 9 10 11 12
This article is compiled by Aashish Barnwal and reviewed by GeeksforGeeks team. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.