Linear Diophantine Equations
A Diophantine equation is a polynomial equation, usually in two or more unknowns, such that only the integral solutions are required. An Integral solution is a solution such that all the unknown variables take only integer values.
Given three integers a, b, c representing a linear equation of the form : ax + by = c. Determine if the equation has a solution such that x and y are both integral values.
Examples:
Input : a = 3, b = 6, c = 9 Output: Possible Explanation : The Equation turns out to be, 3x + 6y = 9 one integral solution would be x = 1 , y = 1 Input : a = 3, b = 6, c = 8 Output : Not Possible Explanation : o integral values of x and y exists that can satisfy the equation 3x + 6y = 8 Input : a = 2, b = 5, c = 1 Output : Possible Explanation : Various integral solutions possible are, (-2,1) , (3,-1) etc.
Solution:
For linear Diophantine equation equations, integral solutions exist if and only if, the GCD of coefficients of the two variables divides the constant term perfectly. In other words, the integral solution exists if, GCD(a ,b) divides c.
Thus the algorithm to determine if an equation has integral solution is pretty straightforward.
- Find GCD of a and b
- Check if c % GCD(a ,b) ==0
- If yes then print Possible
- Else print Not Possible
Below is the implementation of the above approach.
C++
// C++ program to check for solutions of diophantine // equations #include <bits/stdc++.h> using namespace std; //utility function to find the GCD of two numbers int gcd( int a, int b) { return (a%b == 0)? abs (b) : gcd(b,a%b); } // This function checks if integral solutions are // possible bool isPossible( int a, int b, int c) { return (c%gcd(a,b) == 0); } //driver function int main() { // First example int a = 3, b = 6, c = 9; isPossible(a, b, c)? cout << "Possible\n" : cout << "Not Possible\n" ; // Second example a = 3, b = 6, c = 8; isPossible(a, b, c)? cout << "Possible\n" : cout << "Not Possible\n" ; // Third example a = 2, b = 5, c = 1; isPossible(a, b, c)? cout << "Possible\n" : cout << "Not Possible\n" ; return 0; } |
Java
// Java program to check for solutions of // diophantine equations import java.io.*; class GFG { // Utility function to find the GCD // of two numbers static int gcd( int a, int b) { return (a % b == 0 ) ? Math.abs(b) : gcd(b,a%b); } // This function checks if integral // solutions are possible static boolean isPossible( int a, int b, int c) { return (c % gcd(a, b) == 0 ); } // Driver function public static void main (String[] args) { // First example int a = 3 , b = 6 , c = 9 ; if (isPossible(a, b, c)) System.out.println( "Possible" ); else System.out.println( "Not Possible" ); // Second example a = 3 ; b = 6 ; c = 8 ; if (isPossible(a, b, c)) System.out.println( "Possible" ) ; else System.out.println( "Not Possible" ); // Third example a = 2 ; b = 5 ; c = 1 ; if (isPossible(a, b, c)) System.out.println( "Possible" ); else System.out.println( "Not Possible" ); } } // This code is contributed by anuj_67. |
Python3
# Python 3 program to check for solutions # of diophantine equations from math import gcd # This function checks if integral # solutions are possible def isPossible(a, b, c): return (c % gcd(a, b) = = 0 ) # Driver Code if __name__ = = '__main__' : # First example a = 3 b = 6 c = 9 if (isPossible(a, b, c)): print ( "Possible" ) else : print ( "Not Possible" ) # Second example a = 3 b = 6 c = 8 if (isPossible(a, b, c)): print ( "Possible" ) else : print ( "Not Possible" ) # Third example a = 2 b = 5 c = 1 if (isPossible(a, b, c)): print ( "Possible" ) else : print ( "Not Possible" ) # This code is contributed by # Surendra_Gangwar |
C#
// C# program to check for // solutions of diophantine // equations using System; class GFG { // Utility function to find // the GCD of two numbers static int gcd( int a, int b) { return (a % b == 0) ? Math.Abs(b) : gcd(b, a % b); } // This function checks // if integral solutions // are possible static bool isPossible( int a, int b, int c) { return (c % gcd(a, b) == 0); } // Driver Code public static void Main () { // First example int a = 3, b = 6, c = 9; if (isPossible(a, b, c)) Console.WriteLine( "Possible" ); else Console.WriteLine( "Not Possible" ); // Second example a = 3; b = 6; c = 8; if (isPossible(a, b, c)) Console.WriteLine( "Possible" ) ; else Console.WriteLine( "Not Possible" ); // Third example a = 2; b = 5; c = 1; if (isPossible(a, b, c)) Console.WriteLine( "Possible" ); else Console.WriteLine( "Not Possible" ); } } // This code is contributed by anuj_67. |
PHP
<?php // PHP program to check for solutions of // diophantine equations // utility function to find the // GCD of two numbers function gcd( $a , $b ) { return ( $a % $b == 0) ? abs ( $b ) : gcd( $b , $a % $b ); } // This function checks if integral // solutions are possible function isPossible( $a , $b , $c ) { return ( $c % gcd( $a , $b ) == 0); } // Driver Code // First example $a = 3; $b = 6; $c = 9; if (isPossible( $a , $b , $c ) == true) echo "Possible\n" ; else echo "Not Possible\n" ; // Second example $a = 3; $b = 6; $c = 8; if (isPossible( $a , $b , $c ) == true) echo "Possible\n" ; else echo "Not Possible\n" ; // Third example $a = 2; $b = 5; $c = 1; if (isPossible( $a , $b , $c ) == true) echo "Possible\n" ; else echo "Not Possible\n" ; // This code is contributed by ajit.. ?> |
Javascript
<script> // Javascript program to check for solutions of // diophantine equations // Utility function to find the GCD // of two numbers function gcd(a, b) { return (a % b == 0) ? Math.abs(b) : gcd(b,a%b); } // This function checks if integral // solutions are possible function isPossible(a, b, c) { return (c % gcd(a, b) == 0); } // Driver Code // First example let a = 3, b = 6, c = 9; if (isPossible(a, b, c)) document.write( "Possible" + "<br/>" ); else document.write( "Not Possible" + "<br/>" ); // Second example a = 3; b = 6; c = 8; if (isPossible(a, b, c)) document.write( "Possible" + "<br/>" ) ; else document.write( "Not Possible" + "<br/>" ); // Third example a = 2; b = 5; c = 1; if (isPossible(a, b, c)) document.write( "Possible" + "<br/>" ); else document.write( "Not Possible" + "<br/>" ); </script> |
Output :
Possible Not Possible Possible
Time Complexity: O(min(a,b))
Auxiliary Space: O(1)
How does this work? Let GCD of ‘a’ and ‘b’ be ‘g’. g divides a and b. This implies g also divides (ax + by) (if x and y are integers). This implies gcd also divides ‘c’ using the relation that ax + by = c. Refer this wiki link for more details.
New Approach:-
1. Find GCD of a and b using Euclidean algorithm:
- Divide the larger number by the smaller number and find the remainder.
- Repeat the process with the divisor (smaller number) and the remainder.
- Continue this process until the remainder becomes zero.
- The GCD will be the last non-zero remainder.
2. Check if c is divisible by GCD(a, b).
- If c is divisible by GCD(a, b), then there exist integer solutions.
- Otherwise, there are no integer solutions.
Below is the implementation of the above approach:-
C++
#include <bits/stdc++.h> using namespace std; // Function to find the GCD of two numbers int gcd( int a, int b) { if (a == 0) { return b; } return gcd(b % a, a); } // Function to check if integral solutions are possible bool isPossible( int a, int b, int c) { int gcd_val = gcd(a, b); return (c % gcd_val == 0); } // Driver function int main() { int a = 3, b = 6, c = 9; if (isPossible(a, b, c)) { cout << "Possible" << endl; } else { cout << "Not Possible" << endl; } return 0; } |
Java
import java.util.*; class LinearDiophantineEquations { // Function to find the GCD of two numbers public static int gcd( int a, int b) { if (a == 0 ) { return b; } return gcd(b % a, a); } // Function to check if integral solutions are possible public static boolean isPossible( int a, int b, int c) { int gcd = gcd(a, b); return (c % gcd == 0 ); } // Driver function public static void main(String[] args) { int a = 3 , b = 6 , c = 9 ; if (isPossible(a, b, c)) { System.out.println( "Possible" ); } else { System.out.println( "Not Possible" ); } } } |
Python3
class LinearDiophantineEquations: # Function to find the GCD of two numbers def gcd( self , a, b): if a = = 0 : return b return self .gcd(b % a, a) # Function to check if integral solutions are possible def isPossible( self , a, b, c): gcd = self .gcd(a, b) return c % gcd = = 0 # Driver function def main( self ): a, b, c = 3 , 6 , 9 if self .isPossible(a, b, c): print ( "Possible" ) else : print ( "Not Possible" ) # Create an object of the class and call the main function ld = LinearDiophantineEquations() ld.main() |
Javascript
// Function to find the GCD of two numbers function gcd(a, b) { if (a === 0) { return b; } return gcd(b % a, a); } // Function to check if integral solutions are possible function isPossible(a, b, c) { let gcdValue = gcd(a, b); return (c % gcdValue === 0); } // Driver function let a = 3, b = 6, c = 9; if (isPossible(a, b, c)) { console.log( "Possible" ); } else { console.log( "Not Possible" ); } |
Output:-
Possible
Time Complexity:-The time complexity of this program is dominated by the gcd function, which uses the Euclidean algorithm to compute the GCD of two numbers. The time complexity of the Euclidean algorithm is O(log min(a, b)), so the time complexity of the gcd function is O(log min(a, b)). Since the isPossible function calls the gcd function once, its time complexity is also O(log min(a, b)).
Auxiliary Space:-The space complexity of this program is O(1), since we are only using a few integer variables (a, b, c, and gcd) and a few boolean and string variables (isPossible and the output string). None of these variables grow with the input size, so the space complexity is constant.
Therefore, the time complexity of this program is O(log min(a, b)) and the space complexity is O(1).
This article is contributed by Ashutosh Kumar. If you like GeeksforGeeks and would like to contribute, you can also write an article and mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above
Please Login to comment...