Linear Congruential Method is a class of Pseudo Random Number Generator (PRNG) algorithms used for generating sequences of random-like numbers in a specific range. This method can be defined as:
where,
X, is the sequence of pseudo-random numbers
m, ( > 0) the modulus
a, (0, m) the multiplier
c, (0, m) the increment
X0, [0, m) – Initial value of sequence known as seedm, a, c, and X0 should be chosen appropriately to get a period almost equal to m.
For a = 1, it will be additive congruence method.
For c = 0, it will be the multiplicative congruence method.
Approach:
- Choose the seed value X0, Modulus parameter m, Multiplier term a, and increment term c.
- Initialize the required amount of random numbers to generate (say, an integer variable noOfRandomNums).
- Define a storage to keep the generated random numbers (here, vector is considered) of size noOfRandomNums.
- Initialize the 0th index of the vector with the seed value.
- For rest of the indexes follow the Linear Congruential Method to generate the random numbers.
randomNums[i] = ((randomNums[i – 1] * a) + c) % m
Finally, return the random numbers.
Below is the implementation of the above approach:
C++
// C++ implementation of the // above approach #include <bits/stdc++.h> using namespace std; // Function to generate random numbers void linearCongruentialMethod( int Xo, int m, int a, int c, vector< int >& randomNums, int noOfRandomNums) { // Initialize the seed state randomNums[0] = Xo; // Traverse to generate required // numbers of random numbers for ( int i = 1; i < noOfRandomNums; i++) { // Follow the linear congruential method randomNums[i] = ((randomNums[i - 1] * a) + c) % m; } } // Driver Code int main() { int Xo = 5; // Seed value int m = 7; // Modulus parameter int a = 3; // Multiplier term int c = 3; // Increment term // Number of Random numbers // to be generated int noOfRandomNums = 10; // To store random numbers vector< int > randomNums( noOfRandomNums); // Function Call linearCongruentialMethod( Xo, m, a, c, randomNums, noOfRandomNums); // Print the generated random numbers for ( int i = 0; i < noOfRandomNums; i++) { cout << randomNums[i] << " " ; } return 0; } |
Java
// Java implementation of the above appraoch import java.util.*; class GFG{ // Function to generate random numbers static void linearCongruentialMethod( int Xo, int m, int a, int c, int [] randomNums, int noOfRandomNums) { // Initialize the seed state randomNums[ 0 ] = Xo; // Traverse to generate required // numbers of random numbers for ( int i = 1 ; i < noOfRandomNums; i++) { // Follow the linear congruential method randomNums[i] = ((randomNums[i - 1 ] * a) + c) % m; } } // Driver code public static void main(String[] args) { // Seed value int Xo = 5 ; // Modulus parameter int m = 7 ; // Multiplier term int a = 3 ; // Increment term int c = 3 ; // Number of Random numbers // to be generated int noOfRandomNums = 10 ; // To store random numbers int [] randomNums = new int [noOfRandomNums]; // Function Call linearCongruentialMethod(Xo, m, a, c, randomNums, noOfRandomNums); // Print the generated random numbers for ( int i = 0 ; i < noOfRandomNums; i++) { System.out.print(randomNums[i] + " " ); } } } // This code is contributed by offbeat |
Python3
# Python3 implementation of the # above approach # Function to generate random numbers def linearCongruentialMethod(Xo, m, a, c, randomNums, noOfRandomNums): # Initialize the seed state randomNums[ 0 ] = Xo # Traverse to generate required # numbers of random numbers for i in range ( 1 , noOfRandomNums): # Follow the linear congruential method randomNums[i] = ((randomNums[i - 1 ] * a) + c) % m # Driver Code if __name__ = = '__main__' : # Seed value Xo = 5 # Modulus parameter m = 7 # Multiplier term a = 3 # Increment term c = 3 # Number of Random numbers # to be generated noOfRandomNums = 10 # To store random numbers randomNums = [ 0 ] * (noOfRandomNums) # Function Call linearCongruentialMethod(Xo, m, a, c, randomNums, noOfRandomNums) # Print the generated random numbers for i in randomNums: print (i, end = " " ) # This code is contributed by mohit kumar 29 |
C#
// C# implementation of the above appraoch using System; class GFG{ // Function to generate random numbers static void linearCongruentialMethod( int Xo, int m, int a, int c, int [] randomNums, int noOfRandomNums) { // Initialize the seed state randomNums[0] = Xo; // Traverse to generate required // numbers of random numbers for ( int i = 1; i < noOfRandomNums; i++) { // Follow the linear congruential method randomNums[i] = ((randomNums[i - 1] * a) + c) % m; } } // Driver code public static void Main(String[] args) { // Seed value int Xo = 5; // Modulus parameter int m = 7; // Multiplier term int a = 3; // Increment term int c = 3; // Number of Random numbers // to be generated int noOfRandomNums = 10; // To store random numbers int [] randomNums = new int [noOfRandomNums]; // Function call linearCongruentialMethod(Xo, m, a, c, randomNums, noOfRandomNums); // Print the generated random numbers for ( int i = 0; i < noOfRandomNums; i++) { Console.Write(randomNums[i] + " " ); } } } // This code is contributed by sapnasingh4991 |
5 4 1 6 0 3 5 4 1 6
The literal meaning of pseudo is false. These random numbers are called pseudo because some known arithmetic procedure is utilized to generate. Even the generated sequence forms a pattern hence the generated number seems to be random but may not be truly random.
Attention reader! Don’t stop learning now. Get hold of all the important CS Theory concepts for SDE interviews with the CS Theory Course at a student-friendly price and become industry ready.