Skip to content
Related Articles

Related Articles

Line chart in Matplotlib – Python
  • Last Updated : 20 Oct, 2020

Matplotlib is a data visualization library in Python. The pyplot, a sublibrary of matplotlib, is a collection of functions that helps in creating a variety of charts.  Line charts are used to represent the relation between two data X and Y on a different axis. Here we will see some of the examples of a line chart in Python :

Simple line plots

First import Matplotlib.pyplot library for plotting functions. Also, import the Numpy library as per requirement. Then define data values x and y. 

Python3




# importing the required libraries
import matplotlib.pyplot as plt
import numpy as np
  
# define data values
x = np.array([1, 2, 3, 4])  # X-axis points
y = x*2  # Y-axis points
  
plt.plot(x, y)  # Plot the chart
plt.show()  # display

Output:

Simple line plot between X and Y data

we can see in the above output image that there is no label on the x-axis and y-axis. Since labeling is necessary for understanding the chart dimensions. In the following example, we will see how to add labels, Ident in the charts



Python3




import matplotlib.pyplot as plt
import numpy as np
  
  
# Define X and Y variable data
x = np.array([1, 2, 3, 4])
y = x*2
  
plt.plot(x, y)
plt.xlabel("X-axis"# add X-axis label
plt.ylabel("Y-axis"# add Y-axis label
plt.title("Any suitable title"# add title
plt.show()

Output:     

Simple line plot with labels and title

Multiple charts 

  We can display more than one chart in the same container by using pyplot.figure() function. This will help us in comparing the different charts and also control the look and feel of charts .

Python3




import matplotlib.pyplot as plt
import numpy as np
  
  
x = np.array([1, 2, 3, 4])
y = x*2
  
plt.plot(x, y)
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.title("Any suitable title")
plt.show()  # show first chart
  
# The figure() function helps in creating a
# new figure that can hold a new chart in it.
plt.figure()
x1 = [2, 4, 6, 8]
y1 = [3, 5, 7, 9]
plt.plot(x1, y1, '-.')
  
# Show another chart with '-' dotted line
plt.show()

Output:

Multiple plots on the same axis

Here we will see how to add 2 plots within the same axis.



Python3




import matplotlib.pyplot as plt
import numpy as np
  
x = np.array([1, 2, 3, 4])
y = x*2
  
# first plot with X and Y data
plt.plot(x, y)
  
x1 = [2, 4, 6, 8]
y1 = [3, 5, 7, 9]
  
# second plot with x1 and y1 data
plt.plot(x1, y1, '-.')
  
plt.xlabel("X-axis data")
plt.ylabel("Y-axis data")
plt.title('multiple plots')
plt.show()

Output:

Fill the area between two plots

Using the pyplot.fill_between() function we can fill in the region between two line plots in the same graph. This will help us in understanding the margin of data between two line plots based on certain conditions. 

Python3




import matplotlib.pyplot as plt
import numpy as np
  
x = np.array([1, 2, 3, 4])
y = x*2
  
plt.plot(x, y)
  
x1 = [2, 4, 6, 8]
y1 = [3, 5, 7, 9]
  
plt.plot(x, y1, '-.')
plt.xlabel("X-axis data")
plt.ylabel("Y-axis data")
plt.title('multiple plots')
  
plt.fill_between(x, y, y1, color='green', alpha=0.5)
plt.show()

Output:

Fill the area between Y and Y1 data corresponding to X-axis data


Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :