Skip to content
Related Articles
Lexicographically smallest string obtained after concatenating array
• Difficulty Level : Easy
• Last Updated : 27 May, 2021

Given n strings, concatenate them in an order that produces the lexicographically smallest possible string.
Examples:

```Input :  a[] = ["c", "cb", "cba"]
Output : cbacbc
Possible strings are ccbcba, ccbacb,
cbccba, cbcbac, cbacbc and cbaccb.
Among all these strings, cbacbc is
the lexicographically smallest.

Input :  a[] = ["aa", "ab", "aaa"]
Output : aaaaaab```

One might think that sorting the given strings in the lexicographical order and then concatenating them produces the correct output. This approach produces the correct output for inputs like [“a”, “ab”, “abc”]. However, applying this method on [“c”, “cb”, “cba”] produces the wrong input and hence this approach is incorrect.
The correct approach is to use a regular sorting algorithm. When two strings a and b are compared to decide if they have to be swapped or not, do not check if a is lexicographically smaller than b or not. Instead check if appending b at the end of a produces a lexicographically smaller string or appending a at the end of b does. This approach works because we want the concatenated string to be lexicographically small, not the individual strings to be in the lexicographical order.

## C++

 `// CPP code to find the lexicographically``// smallest string``#include ``using` `namespace` `std;` `// Compares two strings by checking if``// which of the two concatenations causes``// lexicographically smaller string.``bool` `compare(string a, string b)``{``    ``return` `(a+b < b+a);``}` `string lexSmallest(string a[], ``int` `n)``{``    ``// Sort strings using above compare()``    ``sort(a, a+n, compare);` `    ``// Concatenating sorted strings``    ``string answer = ``""``;``    ``for` `(``int` `i = 0; i < n; i++)``        ``answer += a[i];` `    ``return` `answer;``}` `// Driver code``int` `main()``{``    ``string a[] = { ``"c"``, ``"cb"``, ``"cba"` `};``    ``int` `n = ``sizeof``(a)/``sizeof``(a);``    ``cout << lexSmallest(a, n);``    ``return` `0;``}`

## Java

 `// Java code to find the lexicographically``// smallest string` `class` `GFG {``    ` `// function to sort the``// array of string``static` `void` `sort(String a[], ``int` `n)``{``    ` `    ``//sort the array``    ``for``(``int` `i = ``0``;i < n;i++)``    ``{``        ``for``(``int` `j = i + ``1``;j < n;j++)``        ``{``            ` `            ``// comparing which of the``            ``// two concatenation causes``            ``// lexiographically smaller``            ``// string``            ``if``((a[i] + a[j]).compareTo(a[j] + a[i]) > ``0``)``            ``{``                ``String s = a[i];``                ``a[i] = a[j];``                ``a[j] = s;``            ``}``        ``}``    ``}``}``    ` `static` `String lexsmallest(String a[], ``int` `n)``{``    ` `    ``// Sort strings``    ``sort(a,n);` `    ``// Concatenating sorted strings``    ``String answer = ``""``;``    ``for` `(``int` `i = ``0``; i < n; i++)``        ``answer += a[i];` `    ``return` `answer;``}` `// Driver code``public` `static` `void` `main(String args[])``{``    ``String a[] = {``"c"``, ``"cb"``, ``"cba"``};``    ``int` `n = ``3``;``    ``System.out.println(``"lexiographically smallest string = "``                                      ``+ lexsmallest(a, n));` `}``}` `// This code is contributed by Arnab Kundu`

## Python 3

 `# Python 3 code to find the lexicographically``# smallest string``def` `lexSmallest(a, n):``  ``# Sort strings using above compare()``  ``for` `i ``in` `range``(``0``,n):``    ``for` `j ``in` `range``(i``+``1``,n):``      ``if``(a[i]``+``a[j]>a[j]``+``a[i]):``        ``s``=``a[i]``        ``a[i]``=``a[j]``        ``a[j]``=``s` `  ``# Concatenating sorted strings``  ``answer ``=` `""``  ``for` `i ``in` `range``( n):``    ``answer ``+``=` `a[i]``  ``return` `answer` `# Driver code``if` `__name__ ``=``=` `"__main__"``:``    ` `    ``a ``=` `[ ``"c"``, ``"cb"``, ``"cba"` `]``    ``n ``=` `len``(a)``    ``print``(lexSmallest(a, n))` `# This code is contributed by vibhu karnwal`  `  `

## C#

 `// C# code to find``// the lexicographically``// smallest string``using` `System;` `class` `GFG {``    ` `// function to sort the``// array of string``static` `void` `sort(String []a, ``int` `n)``{``    ` `    ``//sort the array``    ``for``(``int` `i = 0;i < n;i++)``    ``{``        ``for``(``int` `j = i + 1;j < n;j++)``        ``{``            ` `            ``// comparing which of the``            ``// two concatenation causes``            ``// lexiographically smaller``            ``// string``            ``if``((a[i] + a[j]).CompareTo(a[j] +``                                  ``a[i]) > 0)``            ``{``                ``String s = a[i];``                ``a[i] = a[j];``                ``a[j] = s;``            ``}``        ``}``    ``}``}``    ` `static` `String lexsmallest(String []a, ``int` `n)``{``    ` `    ``// Sort strings``    ``sort(a,n);` `    ``// Concatenating sorted``    ``// strings``    ``String answer = ``""``;``    ``for` `(``int` `i = 0; i < n; i++)``        ``answer += a[i];` `    ``return` `answer;``}` `// Driver code``public` `static` `void` `Main()``{``    ``String []a = {``"c"``, ``"cb"``, ``"cba"``};``    ``int` `n = 3;``    ``Console.Write(``"lexiographically smallest string = "``                                 ``+ lexsmallest(a, n));` `}``}` `// This code is contributed by nitin mittal`

## Javascript

 ``
Output:
`cbacbc`

Time complexity : The above code runs in O(M * N * logN) where N is number of strings and M is maximum length of a string.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live

My Personal Notes arrow_drop_up