Lexicographically smallest string obtained after concatenating array

Given n strings, concatenate them in an order that produces the lexicographically smallest possible string.

Examples:

Input :  a[] = ["c", "cb", "cba"]
Output : cbacbc
Possible strings are ccbcba, ccbacb, 
cbccba, cbcbac, cbacbc and cbaccb. 
Among all these strings, cbacbc is 
the lexicographically smallest.

Input :  a[] = ["aa", "ab", "aaa"]
Output : aaaaaab


One might think that sorting the given strings in the lexicographical order and then concatenating them produces the correct output. This approach produces the correct output for inputs like [“a”, “ab”, “abc”]. However, applying this method on [“c”, “cb”, “cba”] produces the wrong input and hence this approach is incorrect.

The correct approach is to use a regular sorting algorithm. When two strings a and b are compared to decide if they have to be swapped or not, do not check if a is lexicographically smaller than b or not. Instead check if appending b at the end of a produces a lexicographically smaller string or appending a at the end of b does. This approach works because we want the concatenated string to be lexicographically small, not the individual strings to be in the lexicographical order.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP code to find the lexicographically
// smallest string
#include <bits/stdc++.h>
using namespace std;
  
// Compares two strings by checking if 
// which of the two concatenations causes
// lexicographically smaller string.
bool compare(string a, string b)
{
    return (a+b < b+a);
}
  
string lexSmallest(string a[], int n)
{
    // Sort strings using above compare()
    sort(a, a+n, compare);
  
    // Concatenating sorted strings
    string answer = "";
    for (int i = 0; i < n; i++)
        answer += a[i];
  
    return answer;
}
  
// Driver code
int main()
{
    string a[] = { "c", "cb", "cba" };
    int n = sizeof(a)/sizeof(a[0]);
    cout << lexSmallest(a, n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java code to find the lexicographically
// smallest string
  
class GFG {
      
// function to sort the
// array of string
static void sort(String a[], int n)
{
      
    //sort the array
    for(int i = 0;i < n;i++)
    {
        for(int j = i + 1;j < n;j++)
        {
              
            // comparing which of the
            // two concatenation causes
            // lexiographically smaller
            // string
            if((a[i] + a[j]).compareTo(a[j] + a[i]) > 0)
            {
                String s = a[i];
                a[i] = a[j];
                a[j] = s;
            }
        }
    }
}
      
static String lexsmallest(String a[], int n)
{
      
    // Sort strings
    sort(a,n);
  
    // Concatenating sorted strings
    String answer = "";
    for (int i = 0; i < n; i++)
        answer += a[i];
  
    return answer;
}
  
// Driver code
public static void main(String args[])
{
    String a[] = {"c", "cb", "cba"};
    int n = 3;
    System.out.println("lexiographically smallest string = "
                                      + lexsmallest(a, n));
  
}
}
  
// This code is contributed by Arnab Kundu

chevron_right


Python 3

# Python 3 code to find the lexicographically
# smallest string

def lexSmallest(a, n):

# Sort strings using above compare()
a.sort(reverse = True)

# Concatenating sorted strings
answer = “”
for i in range( n):
answer += a[i]

return answer

# Driver code
if __name__ == “__main__”:

a = [ “c”, “cb”, “cba” ]
n = len(a)
print(lexSmallest(a, n))

# This code is contributed by ita_c

C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# code to find 
// the lexicographically
// smallest string
using System;
  
class GFG {
      
// function to sort the
// array of string
static void sort(String []a, int n)
{
      
    //sort the array
    for(int i = 0;i < n;i++)
    {
        for(int j = i + 1;j < n;j++)
        {
              
            // comparing which of the
            // two concatenation causes
            // lexiographically smaller
            // string
            if((a[i] + a[j]).CompareTo(a[j] +
                                  a[i]) > 0)
            {
                String s = a[i];
                a[i] = a[j];
                a[j] = s;
            }
        }
    }
}
      
static String lexsmallest(String []a, int n)
{
      
    // Sort strings
    sort(a,n);
  
    // Concatenating sorted 
    // strings
    String answer = "";
    for (int i = 0; i < n; i++)
        answer += a[i];
  
    return answer;
}
  
// Driver code
public static void Main()
{
    String []a = {"c", "cb", "cba"};
    int n = 3;
    Console.Write("lexiographically smallest string = "
                                 + lexsmallest(a, n));
  
}
}
  
// This code is contributed by nitin mittal

chevron_right


Output:

cbacbc

Time complexity : The above code runs inO(M * N * logN) where N is number of strings and M is maximum length of a string.



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : andrew1234, nitin mittal, Ita_c