Lexicographically smallest string obtained after concatenating array
Given n strings, concatenate them in an order that produces the lexicographically smallest possible string.
Examples:
Input : a[] = ["c", "cb", "cba"] Output : cbacbc Possible strings are ccbcba, ccbacb, cbccba, cbcbac, cbacbc and cbaccb. Among all these strings, cbacbc is the lexicographically smallest. Input : a[] = ["aa", "ab", "aaa"] Output : aaaaaab
One might think that sorting the given strings in the lexicographical order and then concatenating them produces the correct output. This approach produces the correct output for inputs like [“a”, “ab”, “abc”]. However, applying this method on [“c”, “cb”, “cba”] produces the wrong input and hence this approach is incorrect.
The correct approach is to use a regular sorting algorithm. When two strings a and b are compared to decide if they have to be swapped or not, do not check if a is lexicographically smaller than b or not. Instead check if appending b at the end of a produces a lexicographically smaller string or appending a at the end of b does. This approach works because we want the concatenated string to be lexicographically small, not the individual strings to be in the lexicographical order.
C++
// CPP code to find the lexicographically // smallest string #include <bits/stdc++.h> using namespace std; // Compares two strings by checking if // which of the two concatenations causes // lexicographically smaller string. bool compare(string a, string b) { return (a+b < b+a); } string lexSmallest(string a[], int n) { // Sort strings using above compare() sort(a, a+n, compare); // Concatenating sorted strings string answer = "" ; for ( int i = 0; i < n; i++) answer += a[i]; return answer; } // Driver code int main() { string a[] = { "c" , "cb" , "cba" }; int n = sizeof (a)/ sizeof (a[0]); cout << lexSmallest(a, n); return 0; } |
Java
// Java code to find the lexicographically // smallest string class GFG { // function to sort the // array of string static void sort(String a[], int n) { //sort the array for ( int i = 0 ;i < n;i++) { for ( int j = i + 1 ;j < n;j++) { // comparing which of the // two concatenation causes // lexicographically smaller // string if ((a[i] + a[j]).compareTo(a[j] + a[i]) > 0 ) { String s = a[i]; a[i] = a[j]; a[j] = s; } } } } static String lexsmallest(String a[], int n) { // Sort strings sort(a,n); // Concatenating sorted strings String answer = "" ; for ( int i = 0 ; i < n; i++) answer += a[i]; return answer; } // Driver code public static void main(String args[]) { String a[] = { "c" , "cb" , "cba" }; int n = 3 ; System.out.println( "lexicographically smallest string = " + lexsmallest(a, n)); } } // This code is contributed by Arnab Kundu |
Python 3
# Python 3 code to find the lexicographically # smallest string def lexSmallest(a, n): # Sort strings using above compare() for i in range ( 0 ,n): for j in range (i + 1 ,n): if (a[i] + a[j]>a[j] + a[i]): s = a[i] a[i] = a[j] a[j] = s # Concatenating sorted strings answer = "" for i in range ( n): answer + = a[i] return answer # Driver code if __name__ = = "__main__" : a = [ "c" , "cb" , "cba" ] n = len (a) print (lexSmallest(a, n)) # This code is contributed by vibhu karnwal |
C#
// C# code to find // the lexicographically // smallest string using System; class GFG { // function to sort the // array of string static void sort(String []a, int n) { //sort the array for ( int i = 0;i < n;i++) { for ( int j = i + 1;j < n;j++) { // comparing which of the // two concatenation causes // lexicographically smaller // string if ((a[i] + a[j]).CompareTo(a[j] + a[i]) > 0) { String s = a[i]; a[i] = a[j]; a[j] = s; } } } } static String lexsmallest(String []a, int n) { // Sort strings sort(a,n); // Concatenating sorted // strings String answer = "" ; for ( int i = 0; i < n; i++) answer += a[i]; return answer; } // Driver code public static void Main() { String []a = { "c" , "cb" , "cba" }; int n = 3; Console.Write( "lexicographically smallest string = " + lexsmallest(a, n)); } } // This code is contributed by nitin mittal |
Javascript
<script> // Javascript code to find the lexicographically // smallest string // function to sort the // array of string function sort(a,n) { // sort the array for (let i = 0;i < n;i++) { for (let j = i + 1;j < n;j++) { // comparing which of the // two concatenation causes // lexicographically smaller // string if ((a[i] + a[j])>(a[j] + a[i]) ) { let s = a[i]; a[i] = a[j]; a[j] = s; } } } } function lexsmallest(a,n) { // Sort strings sort(a,n); // Concatenating sorted strings let answer = "" ; for (let i = 0; i < n; i++) answer += a[i]; return answer; } // Driver code let a=[ "c" , "cb" , "cba" ]; let n = 3; document.write( "lexicographically smallest string = " + lexsmallest(a, n)); // This code is contributed by rag2127 </script> |
cbacbc
Time complexity : The above code runs in O(M * N * logN) where N is number of strings and M is maximum length of a string.
Auxiliary Space: O(n)
This article is contributed by Aarti_Rathi. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.