# Lexicographically Smallest Permutation of length N such that for exactly K indices, a[i] > a[i] + 1

• Difficulty Level : Basic
• Last Updated : 09 Sep, 2022

Given two integers N and K, the task is to generate a permutation of N numbers (Every number from 1 to N occurs exactly once) such that the number of indices where a[i]>a[i+1] is exactly K. Print “Not possible” if no such permutation is possible.

Examples:

```Input: N = 5, K = 3
Output: 5 4 3 1 2
Starting 3 indices satisfying the condition
a[i] > a[i]+1

Input: N = 7, k = 4
Output: 7 6 5 4 1 2 3```

Approach: Since the permutation should be lexicographically smallest with the condition satisfied for k indices i.e. a[i] > a[i+1]. So for that starting K+1 digits should be in decreasing order and the remaining should be in increasing order. So just print the K numbers from N to 1. Then print numbers from 1 to N-K.

For example: N = 6, K = 4
Print K numbers from N to 1 i.e. 6, 5, 4, 3
Print N-K numbers from 1 to N-K i.e. 1, 2
Permutation will be 654312 i.e. Starting 4 indices satisfy a[i] > a[i+1] for i = 1 to k.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the above approach``#include ``using` `namespace` `std;` `void` `printPermutation(``int` `n, ``int` `k)``{``    ``int` `i, mx = n;``    ``for` `(i = 1; i <= k; i++) ``// Decreasing part``    ``{``        ``cout << mx << ``" "``;``        ``mx--;``    ``}``    ``for` `(i = 1; i <= mx; i++) ``// Increasing part``        ``cout << i << ``" "``;``}` `// Driver Code``int` `main()``{``    ``int` `N = 5, K = 3;` `    ``if` `(K >= N - 1)``        ``cout << ``"Not Possible"``;` `    ``else``        ``printPermutation(N, K);` `    ``return` `0;``}`

## Java

 `// Java implementation of the above approach` `import` `java.io.*;` `class` `GFG {`  `static` `void` `printPermutation(``int` `n, ``int` `k)``{``    ``int` `i, mx = n;``    ``for` `(i = ``1``; i <= k; i++) ``// Decreasing part``    ``{``        ``System.out.print( mx + ``" "``);``        ``mx--;``    ``}``    ``for` `(i = ``1``; i <= mx; i++) ``// Increasing part``        ``System.out.print( i + ``" "``);``}` `// Driver Code` `    ``public` `static` `void` `main (String[] args) {``            ``int` `N = ``5``, K = ``3``;` `    ``if` `(K >= N - ``1``)``        ``System.out.print( ``"Not Possible"``);` `    ``else``        ``printPermutation(N, K);``    ``}``}` `// This code is contributed by inder_verma..`

## Python3

 `# Python3 implementation of the``# above approach``def` `printPermutation(n, k):` `    ``mx ``=` `n``    ``for` `i ``in` `range``(``1``, k ``+` `1``): ``# Decreasing part``        ``print``(mx, end ``=` `" "``)``        ``mx ``-``=` `1``    ` `    ``for` `i ``in` `range``(``1``, mx ``+` `1``): ``# Increasing part``        ``print``(i, end ``=` `" "``)` `# Driver Code``if` `__name__ ``=``=` `"__main__"``:` `    ``N, K ``=` `5``, ``3` `    ``if` `K >``=` `N ``-` `1``:``        ``print``(``"Not Possible"``)` `    ``else``:``        ``printPermutation(N, K)` `# This code is contributed``# by Rituraj Jain`

## C#

 `// C# implementation of the above approach``using` `System;``class` `GFG {`  `static` `void` `printPermutation(``int` `n, ``int` `k)``{``    ``int` `i, mx = n;``    ``for` `(i = 1; i <= k; i++) ``// Decreasing part``    ``{``        ``Console.Write( mx + ``" "``);``        ``mx--;``    ``}``    ``for` `(i = 1; i <= mx; i++) ``// Increasing part``        ``Console.Write( i + ``" "``);``}` `// Driver Code` `    ``public` `static` `void` `Main () {``            ``int` `N = 5, K = 3;` `    ``if` `(K >= N - 1)``        ``Console.WriteLine( ``"Not Possible"``);` `    ``else``        ``printPermutation(N, K);``    ``}``}` `// This code is contributed by inder_verma..`

## PHP

 `= ``\$N` `- 1)``        ``echo` `"Not Possible"``;` `    ``else``        ``printPermutation(``\$N``, ``\$K``);`  `// This code is contributed by inder_verma..``?>`

## Javascript

 ``

Output

`5 4 3 1 2 `

Time Complexity: O(N)

My Personal Notes arrow_drop_up