Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Lexicographically smallest permutation of first N natural numbers having K perfect indices

  • Last Updated : 14 May, 2021

Given two positive integers N and K, the task is to find lexicographically the smallest permutation of first N natural numbers such that there are exactly K perfect indices.
 

An index i in an array is said to be perfect if all the elements at indices smaller than i are smaller than the element at index i.
 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

Examples:

 



Input: N = 10, K = 3
Output: 8 9 10 1 2 3 4 5 6 7
Explanation: There are exactly 3 perfect indices 0, 1 and 2.

Input: N = 12, K = 4
Output: 9 10 11 12 1 2 3 4 5 6 7 8

Naive Approach: The idea is to generate all the possible permutations of first N natural numbers and print that permutation which is lexicographically smallest and has K perfect indices
Time Complexity: O(N*N!) 
Auxiliary Space: O(1)
 

Efficient Approach: To optimize the above approach, the idea is to observe that the smallest permutation will have the last K elements of the range [1, N] in the front in increasing order. The remaining elements can be appended in increasing order. Follow the steps below to solve the problem:

 

  • Initialize an array A[] to store the lexicographically smallest permutation of first N natural numbers.
  • Iterate over the range [0, K – 1] using a variable, say i, and update the array element A[i] to store (N – K + 1) + i.
  • Iterate over the range [K, N – 1] using the variable i and update the array element A[i] to (i – K + 1).
  • After completing the above steps, print the array A[] that contains lexicographically the smallest permutation with K perfect indices.
     

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
#include <iostream>
using namespace std;
 
// Function to print the lexicographically
// smallest permutation with K perfect indices
void findPerfectIndex(int N, int K)
{
    // Iterator to traverse the array
    int i = 0;
 
    // Traverse first K array indices
    for (; i < K; i++) {
        cout << (N - K + 1) + i << " ";
    }
 
    // Traverse remaining indices
    for (; i < N; i++) {
        cout << i - K + 1 << " ";
    }
}
 
// Driver Code
int main()
{
    int N = 10, K = 3;
    findPerfectIndex(N, K);
 
    return 0;
}

Java




// Java program for the above approach
import java.util.*;
class GFG
{
 
// Function to print the lexicographically
// smallest permutation with K perfect indices
static void findPerfectIndex(int N, int K)
{
   
    // Iterator to traverse the array
    int i = 0;
 
    // Traverse first K array indices
    for (; i < K; i++)
    {
        System.out.print((N - K + 1) + i+ " ");
    }
 
    // Traverse remaining indices
    for (; i < N; i++)
    {
        System.out.print(i - K + 1+ " ");
    }
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 10, K = 3;
    findPerfectIndex(N, K);
}
}
 
// This code is contributed by shikhasingrajput

Python3




# Python program for the above approach
 
# Function to print the lexicographically
# smallest permutation with K perfect indices
def findPerfectIndex(N, K) :
     
    # Iterator to traverse the array
    i = 0
 
    # Traverse first K array indices
    for i in range(K):
        print((N - K + 1) + i, end = " ")
     
 
    # Traverse remaining indices
    for i in range(3, N):
        print( i - K + 1, end = " ")
     
# Driver Code
 
N = 10
K = 3
findPerfectIndex(N, K)
 
# This code is contributed by code_hunt.

C#




// C# program for the above approach
using System;
class GFG
{
 
// Function to print the lexicographically
// smallest permutation with K perfect indices
static void findPerfectIndex(int N, int K)
{
   
    // Iterator to traverse the array
    int i = 0;
 
    // Traverse first K array indices
    for (; i < K; i++)
    {
        Console.Write((N - K + 1) + i+ " ");
    }
 
    // Traverse remaining indices
    for (; i < N; i++)
    {
        Console.Write(i - K + 1+ " ");
    }
}
 
// Driver Code
public static void Main(String[] args)
{
    int N = 10, K = 3;
    findPerfectIndex(N, K);
}
}
 
// This code is contributed by susmitakundugoaldanga.

Javascript




<script>
 
// javascript program for the above approach
// Function to prvar the lexicographically
// smallest permutation with K perfect indices
function findPerfectIndex(N , K)
{
   
    // Iterator to traverse the array
    var i = 0;
 
    // Traverse first K array indices
    for (; i < K; i++)
    {
        document.write((N - K + 1) + i+ " ");
    }
 
    // Traverse remaining indices
    for (; i < N; i++)
    {
        document.write(i - K + 1+ " ");
    }
}
 
// Driver Code
var N = 10, K = 3;
findPerfectIndex(N, K);
 
// This code is contributed by 29AjayKumar
</script>
Output: 
8 9 10 1 2 3 4 5 6 7

 

Time Complexity: O(N)
Auxiliary Space: O(1)




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!