Given two strings S1 of size N and S2 of size M, the task is to find the lexicographically smallest and the largest anagrams of S1 such that it contains the string S2 as a substring.
Examples:
Input: S1 = “hheftaabzzdr”, S2 = “earth”
Output: abdearthfhzz, zzhfearthdba
Explanation:
The smallest anagram of the given string S1 with S2 as a substring is “abdearthfhzz”
The largest anagram of the given string S1 with s2 as a substring is “zzhfearthdba”Input: S1 = “ethgakagmenpgs”, S2 = “geeks”
Output: aageeksgghmnpt, tpmnhgggeeksaa
Explanation:
The smallest anagram of the given string S1 with S2 as a substring is “aageeksgghmnpt”
The largest anagram of the given string S1 with S2 as a substring is “tpmnhgggeeksaa”
Naive Approach: The simplest approach is to find all possible anagrams of S1 and check if any of those anagrams contain S2 as a substring or not. If yes, then find the lexicographically smallest and the largest among them.
Time Complexity: O(N!)
Auxiliary Space: O(N)
Efficient Approach: The idea is to first generate the lexicographically smallest anagram character by character and then find the lexicographically largest anagram by reversing the smallest anagram except for the substring which contains S2. Below are the steps:
- Initialize a map M and store the frequency of each character present in S1
- Maintain a Set S which stores the distinct characters present in S1.
- Decrease the frequency of characters of S1 from M which are already present in S2.
- Initialize an empty string res which will store the lexicographically largest anagram.
- Iterate over the set S, if the first character of string S2 is encountered while traversing the set values, check if the second distinct character of S2 is greater than the current character of Set. If so, then add all the characters of S2 to res.
- Otherwise, keep on iterating the Set and add the characters to res.
Below is the implementation of the above approach:
C++14
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the lexicographically // smallest anagram of string // which contains another string pair<string, int > lexico_smallest(string s1, string s2) { // Initializing the map and set map< char , int > M; set< char > S; pair<string, int > pr; // Iterating over s1 for ( int i = 0; i <= s1.size() - 1; ++i) { // Storing the frequency of // characters present in s1 M[s1[i]]++; // Storing the distinct // characters present in s1 S.insert(s1[i]); } // Decreasing the frequency of // characters from M that // are already present in s2 for ( int i = 0; i <= s2.size() - 1; ++i) { M[s2[i]]--; } char c = s2[0]; int index = 0; string res = "" ; // Traversing alphabets // in sorted order for ( auto x : S) { // If current character of set // is not equal to current // character of s2 if (x != c) { for ( int i = 1; i <= M[x]; ++i) { res += x; } } else { // If element is equal to // current character of s2 int j = 0; index = res.size(); // Checking for second // distinct character in s2 while (s2[j] == x) { j++; } // s2[j] will store // second distinct charcter if (s2[j] < c) { res += s2; for ( int i = 1; i <= M[x]; ++i) { res += x; } } else { for ( int i = 1; i <= M[x]; ++i) { res += x; } index += M[x]; res += s2; } } } pr.first = res; pr.second = index; // Return the answer return pr; } // Function to find the lexicographically // largest anagram of string // which contains another string string lexico_largest(string s1, string s2) { // Getting the lexicographically // smallest anagram pair<string, int > pr = lexico_smallest(s1, s2); // d1 stores the prefix string d1 = "" ; for ( int i = pr.second - 1; i >= 0; i--) { d1 += pr.first[i]; } // d2 stores the suffix string d2 = "" ; for ( int i = pr.first.size() - 1; i >= pr.second + s2.size(); --i) { d2 += pr.first[i]; } string res = d2 + s2 + d1; // Return the result return res; } // Driver Code int main() { // Given two strings string s1 = "ethgakagmenpgs" ; string s2 = "geeks" ; // Function Calls cout << lexico_smallest(s1, s2).first << "\n" ; cout << lexico_largest(s1, s2); return (0); } |
Java
// Java program for the above approach import java.lang.*; import java.io.*; import java.util.*; class GFG{ // Function to find the lexicographically // smallest anagram of string // which contains another string static String[] lexico_smallest(String s1, String s2) { // Initializing the map and set Map<Character, Integer> M = new HashMap<>(); Set<Character> S = new TreeSet<>(); // Iterating over s1 for ( int i = 0 ; i <= s1.length() - 1 ; ++i) { // Storing the frequency of // characters present in s1 if (!M.containsKey(s1.charAt(i))) M.put(s1.charAt(i), 1 ); else M.replace(s1.charAt(i), M.get(s1.charAt(i)) + 1 ); // Storing the distinct // characters present in s1 S.add(s1.charAt(i)); } // Decreasing the frequency of // characters from M that // are already present in s2 for ( int i = 0 ; i <= s2.length() - 1 ; ++i) { if (M.containsKey(s2.charAt(i))) M.replace(s2.charAt(i), M.get(s2.charAt(i)) - 1 ); } char c = s2.charAt( 0 ); int index = 0 ; String res = "" ; // Traversing alphabets // in sorted order Iterator<Character> it = S.iterator(); while (it.hasNext()) { char x = it.next(); // If current character of set // is not equal to current // character of s2 if (x != c) { for ( int i = 1 ; i <= M.get(x); ++i) { res += x; } } else { // If element is equal to // current character of s2 int j = 0 ; index = res.length(); // Checking for second // distinct character in s2 while (s2.charAt(j) == x) { j++; } // s2[j] will store // second distinct charcter if (s2.charAt(j) < c) { res += s2; for ( int i = 1 ; i <= M.get(x); ++i) { res += x; } } else { for ( int i = 1 ; i <= M.get(x); ++i) { res += x; } index += M.get(x); res += s2; } } } String pr[] = {res, index + "" }; return pr; } // Function to find the lexicographically // largest anagram of string // which contains another string static String lexico_largest(String s1, String s2) { // Getting the lexicographically // smallest anagram String pr[] = lexico_smallest(s1, s2); // d1 stores the prefix String d1 = "" ; for ( int i = Integer.valueOf(pr[ 1 ]) - 1 ; i >= 0 ; i--) { d1 += pr[ 0 ].charAt(i); } // d2 stores the suffix String d2 = "" ; for ( int i = pr[ 0 ].length() - 1 ; i >= Integer.valueOf(pr[ 1 ]) + s2.length(); --i) { d2 += pr[ 0 ].charAt(i); } String res = d2 + s2 + d1; // Return the result return res; } // Driver Code public static void main (String[] args) { // Given two strings String s1 = "ethgakagmenpgs" ; String s2 = "geeks" ; // Function Calls System.out.println(lexico_smallest(s1, s2)[ 0 ]); System.out.println(lexico_largest(s1, s2)); } } // This code is contributed by jyoti369 |
Python3
# Python program for the above approach # Function to find the lexicographically # smallest anagram of string # which contains another string def lexico_smallest(s1, s2): # Initializing the dictionary and set M = {} S = [] pr = {} # Iterating over s1 for i in range ( len (s1)): # Storing the frequency of # characters present in s1 if s1[i] not in M: M[s1[i]] = 1 else : M[s1[i]] + = 1 # Storing the distinct # characters present in s1 S.append(s1[i]) S = list ( set (S)) S.sort() # Decreasing the frequency of # characters from M that # are already present in s2 for i in range ( len (s2)): if s2[i] in M: M[s2[i]] - = 1 c = s2[ 0 ] index = 0 res = "" # Traversing alphabets # in sorted order for x in S: # If current character of set # is not equal to current # character of s2 if (x ! = c): for i in range ( 1 , M[x] + 1 ): res + = x else : # If element is equal to # current character of s2 j = 0 index = len (res) # Checking for second # distinct character in s2 while (s2[j] = = x): j + = 1 # s2[j] will store # second distinct charcter if (s2[j] < c): res + = s2 for i in range ( 1 , M[x] + 1 ): res + = x else : for i in range ( 1 , M[x] + 1 ): res + = x index + = M[x] res + = s2 pr[res] = index # Return the answer return pr # Function to find the lexicographically # largest anagram of string # which contains another string def lexico_largest(s1, s2): # Getting the lexicographically # smallest anagram Pr = dict (lexico_smallest(s1, s2)) # d1 stores the prefix d1 = "" key = [ * Pr][ 0 ] for i in range (Pr.get(key) - 1 , - 1 , - 1 ): d1 + = key[i] # d2 stores the suffix d2 = "" for i in range ( len (key) - 1 , Pr[key] + len (s2) - 1 , - 1 ): d2 + = key[i] res = d2 + s2 + d1 # Return the result return res # Driver Code # Given two strings s1 = "ethgakagmenpgs" s2 = "geeks" # Function Calls print ( * lexico_smallest(s1, s2)) print (lexico_largest(s1, s2)) # This code is contributed by avanitrachhadiya2155 |
aageeksgghmnpt tpnmhgggeeksaa
Time Complexity: O(N+M)
Auxiliary Space: O(N)
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.