Open In App
Related Articles

Lexicographically largest subsequence such that every character occurs at least k times

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a string S and an integer K. The task is to find lexicographically largest subsequence of S, say T, such that every character in T must occur at least K times.

Examples: 

Input : S = "banana", K = 2.
Output : nn
Possible subsequence where each character exists at least 2 times are:

Check if a line touches or intersects a circle

From the above subsequences, "nn" is the lexicographically largest.

The idea is to solve greedily the above problem. If we want to make the subsequence lexicographically largest, we must give priority to lexicographically larger characters. ‘z’ is the largest character, let suppose z occurs fz times in S. If fz >= K, append ‘z’z k times in the string T and keep removing characters from the left of S until all the z’s are removed. Apply the strategy with ‘y’, ‘w’, ….., ‘a’. In the end, you will find the answer.

Let see an example. Suppose S = “zzwzawa” and K = 2. Start with the largest character ‘z’. Here fz = 3 >= K. So T will become “zzz” and we will remove letters from the left of S until all the z’s are removed. So now S will become “awa”. Next largest is ‘y’ but that occurs 0 times in k so we will skip it. We will skip ‘w’, ‘v’ etc also until we go to ‘a’ which occurs 2 times. Now T will become “zzzaa” and S will become a empty string. Our answer is “zzzaa”.

Below is implementation of this approach: 

C++




// C++ program to find lexicographically largest
// subsequence where every character appears at
// least k times.
#include <bits/stdc++.h>
using namespace std;
 
// Find lexicographically largest subsequence of
// s[0..n-1] such that every character appears
// at least k times. The result is filled in t[]
void subsequence(char s[], char t[], int n, int k)
{
    int last = 0, cnt = 0, new_last = 0, size = 0;
 
    // Starting from largest character 'z' to 'a'
    for (char ch = 'z'; ch >= 'a'; ch--) {
        cnt = 0;
 
        // Counting the frequency of the character
        for (int i = last; i < n; i++) {
            if (s[i] == ch)
                cnt++;
        }
 
        // If frequency is greater than k
        if (cnt >= k) {
 
            // From the last point we leave
            for (int i = last; i < n; i++) {
 
                // check if string contain ch
                if (s[i] == ch) {
 
                    // If yes, append to output string
                    t[size++] = ch;
                    new_last = i;
                }
            }
 
            // Update the last point.
            last = new_last;
        }
    }
    t[size] = '\0';
}
 
// Driver code
int main()
{
    char s[] = "banana";
    int n = sizeof(s);
    int k = 2;
    char t[n];
    subsequence(s, t, n - 1, k);
    cout << t << endl;
    return 0;
}


Java




import java.util.Arrays;
 
 
// Java program to find lexicographically largest
// subsequence where every character appears at
// least k times. 
class GFG {
 
// Find lexicographically largest subsequence of
// s[0..n-1] such that every character appears
// at least k times. The result is filled in t[]
static void subsequence(char s[], char t[], int n, int k)
{
    int last = 0, cnt = 0, new_last = 0, size = 0;
  
    // Starting from largest character 'z' to 'a'
    for (char ch = 'z'; ch >= 'a'; ch--) {
        cnt = 0;
  
        // Counting the frequency of the character
        for (int i = last; i < n; i++) {
            if (s[i] == ch)
                cnt++;
        }
  
        // If frequency is greater than k
        if (cnt >= k) {
  
            // From the last point we leave
            for (int i = last; i < n; i++) {
  
                // check if string contain ch
                if (s[i] == ch) {
  
                    // If yes, append to output string
                    t[size++] = ch;
                    new_last = i;
                }
            }
  
            // Update the last point.
            last = new_last;
        }
    }
    t[size] = '\0';
}
  
// Driver code
    public static void main(String[] args) {
    char s[] = {'b','a','n','a','n','a'};
    int n = s.length;
    int k = 2;
    char t[] = new char[n];
    subsequence(s, t, n - 1, k);
    for(int i = 0;i<t.length;i++)
        if(t[i]!=0)
            System.out.print(t[i]);
     
    }
}
 
// This code is contributed by Jajput-Ji


Python3




# Python3 program to find lexicographically largest
# subsequence where every character appears at
# least k times.
 
# Find lexicographically largest subsequence of
# s[0..n-1] such that every character appears
# at least k times. The result is filled in t[]
def subsequence(s, t, n, k):
    last = 0
    cnt = 0
    new_last = 0
    size = 0
 
    string = 'zyxwvutsrqponmlkjihgfedcba'
 
    # Starting from largest character 'z' to 'a'
    for ch in string:
        cnt = 0
        for i in range(last, n):
            if s[i] == ch:
                cnt += 1
 
        # If frequency is greater than k
        if cnt >= k:
 
            # From the last point we leave
            for i in range(last, n):
 
                # check if string contain ch
                if s[i] == ch:
 
                    # If yes, append to output string
                    t[size] = ch
                    new_last = i
                    size += 1
 
            # Update the last point.
            last = new_last
 
# Driver Code
if __name__ == "__main__":
    s = ['b', 'a', 'n', 'a', 'n', 'a']
    n = len(s)
    k = 2
    t = [''] * n
    subsequence(s, t, n - 1, k)
    t = ''.join(t)
    print(t)
 
# This code is contributed by
# sanjeev2552


C#




// C# program to find lexicographically
// largest subsequence where every
// character appears at least k times.
using System;
 
class GFG
{
 
// Find lexicographically largest subsequence
// of s[0..n-1] such that every character
// appears at least k times. The result is
// filled in t[]
static void subsequence(char []s, char []t,
                        int n, int k)
{
    int last = 0, cnt = 0,
        new_last = 0, size = 0;
 
    // Starting from largest character
    // 'z' to 'a'
    for (char ch = 'z'; ch >= 'a'; ch--)
    {
        cnt = 0;
 
        // Counting the frequency of
        // the character
        for (int i = last; i < n; i++)
        {
            if (s[i] == ch)
                cnt++;
        }
 
        // If frequency is greater than k
        if (cnt >= k)
        {
 
            // From the last point we leave
            for (int i = last; i < n; i++)
            {
 
                // check if string contain ch
                if (s[i] == ch)
                {
 
                    // If yes, append to output string
                    t[size++] = ch;
                    new_last = i;
                }
            }
 
            // Update the last point.
            last = new_last;
        }
    }
    t[size] = '\0';
}
 
// Driver code
public static void Main()
{
    char []s = {'b','a','n','a','n','a'};
    int n = s.Length;
    int k = 2;
    char []t = new char[n];
    subsequence(s, t, n - 1, k);
    for(int i = 0; i < t.Length; i++)
        if(t[i] != 0)
            Console.Write(t[i]);
}
}
 
// This code contributed by Rajput-Ji


Javascript




<script>
 
 
// Javascript program to find
// lexicographically largest
// subsequence where every
// character appears at
// least k times.
 
// Find lexicographically largest subsequence of
// s[0..n-1] such that every character appears
// at least k times. The result is filled in t[]
function subsequence(s, t, n, k)
{
    var last = 0, cnt = 0, new_last = 0, size = 0;
 
    // Starting from largest character 'z' to 'a'
    for (var ch = 'z'.charCodeAt(0);
    ch >= 'a'.charCodeAt(0); ch--)
    {
        cnt = 0;
 
        // Counting the frequency of the character
        for (var i = last; i < n; i++) {
            if (s[i].charCodeAt(0) == ch)
                cnt++;
        }
 
        // If frequency is greater than k
        if (cnt >= k) {
 
            // From the last point we leave
            for (var i = last; i < n; i++) {
 
                // check if string contain ch
                if (s[i].charCodeAt(0) == ch) {
 
                    // If yes, append to output string
                    t[size++] = String.fromCharCode(ch);
                    new_last = i;
                }
            }
 
            // Update the last point.
            last = new_last;
        }
    }
}
 
// Driver code
var s = "banana";
var n = s.length;
var k = 2;
var t = Array(n);
subsequence(s, t, n - 1, k);
document.write( t.join('') );
 
 
</script>


Output

nn

Time Complexity: O(n)
Auxiliary Space: O(n)

If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks. 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 20 Jul, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials