Given a string, print all permutations of it in sorted order. For example, if the input string is “ABC”, then output should be “ABC, ACB, BAC, BCA, CAB, CBA”.

We have discussed a program to print all permutations in this post, but here we must print the permutations in increasing order.

Following are the steps to print the permutations lexicographic-ally

**1.** Sort the given string in non-decreasing order and print it. The first permutation is always the string sorted in non-decreasing order.

**2. **Start generating next higher permutation. Do it until next higher permutation is not possible. If we reach a permutation where all characters are sorted in non-increasing order, then that permutation is the last permutation.

**Steps to generate the next higher permutation:**

**1.** Take the previously printed permutation and find the rightmost character in it, which is smaller than its next character. Let us call this character as ‘first character’.

**2.** Now find the ceiling of the ‘first character’. Ceiling is the smallest character on right of ‘first character’, which is greater than ‘first character’. Let us call the ceil character as ‘second character’.

**3.** Swap the two characters found in above 2 steps.

**4.** Sort the substring (in non-decreasing order) after the original index of ‘first character’.

Let us consider the string “ABCDEF”. Let previously printed permutation be “DCFEBA”. The next permutation in sorted order should be “DEABCF”. Let us understand above steps to find next permutation. The ‘first character’ will be ‘C’. The ‘second character’ will be ‘E’. After swapping these two, we get “DEFCBA”. The final step is to sort the substring after the character original index of ‘first character’. Finally, we get “DEABCF”.

Following is C++ implementation of the algorithm.

`// Program to print all permutations of a string in sorted order. ` `#include <stdio.h> ` `#include <stdlib.h> ` `#include <string.h> ` ` ` `/* Following function is needed for library function qsort(). Refer ` `int` `compare (` `const` `void` `*a, ` `const` `void` `* b) ` `{ ` `return` `( *(` `char` `*)a - *(` `char` `*)b ); } ` ` ` `// A utility function two swap two characters a and b ` `void` `swap (` `char` `* a, ` `char` `* b) ` `{ ` ` ` `char` `t = *a; ` ` ` `*a = *b; ` ` ` `*b = t; ` `} ` ` ` `// This function finds the index of the smallest character ` `// which is greater than 'first' and is present in str[l..h] ` `int` `findCeil (` `char` `str[], ` `char` `first, ` `int` `l, ` `int` `h) ` `{ ` ` ` `// initialize index of ceiling element ` ` ` `int` `ceilIndex = l; ` ` ` ` ` `// Now iterate through rest of the elements and find ` ` ` `// the smallest character greater than 'first' ` ` ` `for` `(` `int` `i = l+1; i <= h; i++) ` ` ` `if` `(str[i] > first && str[i] < str[ceilIndex]) ` ` ` `ceilIndex = i; ` ` ` ` ` `return` `ceilIndex; ` `} ` ` ` `// Print all permutations of str in sorted order ` `void` `sortedPermutations ( ` `char` `str[] ) ` `{ ` ` ` `// Get size of string ` ` ` `int` `size = ` `strlen` `(str); ` ` ` ` ` `// Sort the string in increasing order ` ` ` `qsort` `( str, size, ` `sizeof` `( str[0] ), compare ); ` ` ` ` ` `// Print permutations one by one ` ` ` `bool` `isFinished = ` `false` `; ` ` ` `while` `( ! isFinished ) ` ` ` `{ ` ` ` `// print this permutation ` ` ` `printf` `(` `"%s \n"` `, str); ` ` ` ` ` `// Find the rightmost character which is smaller than its next ` ` ` `// character. Let us call it 'first char' ` ` ` `int` `i; ` ` ` `for` `( i = size - 2; i >= 0; --i ) ` ` ` `if` `(str[i] < str[i+1]) ` ` ` `break` `; ` ` ` ` ` `// If there is no such chracter, all are sorted in decreasing order, ` ` ` `// means we just printed the last permutation and we are done. ` ` ` `if` `( i == -1 ) ` ` ` `isFinished = ` `true` `; ` ` ` `else` ` ` `{ ` ` ` `// Find the ceil of 'first char' in right of first character. ` ` ` `// Ceil of a character is the smallest character greater than it ` ` ` `int` `ceilIndex = findCeil( str, str[i], i + 1, size - 1 ); ` ` ` ` ` `// Swap first and second characters ` ` ` `swap( &str[i], &str[ceilIndex] ); ` ` ` ` ` `// Sort the string on right of 'first char' ` ` ` `qsort` `( str + i + 1, size - i - 1, ` `sizeof` `(str[0]), compare ); ` ` ` `} ` ` ` `} ` `} ` ` ` `// Driver program to test above function ` `int` `main() ` `{ ` ` ` `char` `str[] = ` `"ABCD"` `; ` ` ` `sortedPermutations( str ); ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

Output:

ABCD ABDC .... .... DCAB DCBA

The upper bound on time complexity of the above program is O(n^2 x n!). We can optimize step 4 of the above algorithm for finding next permutation. Instead of sorting the subarray after the ‘first character’, we can reverse the subarray, because the subarray we get after swapping is always sorted in non-increasing order. This optimization makes the time complexity as O(n x n!). See following optimized code.

`// An optimized version that uses reverse instead of sort for ` `// finding the next permutation ` ` ` `// A utility function to reverse a string str[l..h] ` `void` `reverse(` `char` `str[], ` `int` `l, ` `int` `h) ` `{ ` ` ` `while` `(l < h) ` ` ` `{ ` ` ` `swap(&str[l], &str[h]); ` ` ` `l++; ` ` ` `h--; ` ` ` `} ` `} ` ` ` `// Print all permutations of str in sorted order ` `void` `sortedPermutations ( ` `char` `str[] ) ` `{ ` ` ` `// Get size of string ` ` ` `int` `size = ` `strlen` `(str); ` ` ` ` ` `// Sort the string in increasing order ` ` ` `qsort` `( str, size, ` `sizeof` `( str[0] ), compare ); ` ` ` ` ` `// Print permutations one by one ` ` ` `bool` `isFinished = ` `false` `; ` ` ` `while` `( ! isFinished ) ` ` ` `{ ` ` ` `// print this permutation ` ` ` `printf` `(` `"%s \n"` `, str); ` ` ` ` ` `// Find the rightmost character which is smaller than its next ` ` ` `// character. Let us call it 'first char' ` ` ` `int` `i; ` ` ` `for` `( i = size - 2; i >= 0; --i ) ` ` ` `if` `(str[i] < str[i+1]) ` ` ` `break` `; ` ` ` ` ` `// If there is no such chracter, all are sorted in decreasing order, ` ` ` `// means we just printed the last permutation and we are done. ` ` ` `if` `( i == -1 ) ` ` ` `isFinished = ` `true` `; ` ` ` `else` ` ` `{ ` ` ` `// Find the ceil of 'first char' in right of first character. ` ` ` `// Ceil of a character is the smallest character greater than it ` ` ` `int` `ceilIndex = findCeil( str, str[i], i + 1, size - 1 ); ` ` ` ` ` `// Swap first and second characters ` ` ` `swap( &str[i], &str[ceilIndex] ); ` ` ` ` ` `// reverse the string on right of 'first char' ` ` ` `reverse( str, i + 1, size - 1 ); ` ` ` `} ` ` ` `} ` `} ` |

*chevron_right*

*filter_none*

The above programs print duplicate permutation when characters are repeated. We can avoid it by keeping track of the previous permutation. While printing, if the current permutation is same as previous permutation, we won’t print it.

This article is compiled by **Aashish Barnwal **and reviewed by GeeksforGeeks team. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

## Recommended Posts:

- Print all the palindromic permutations of given string in alphabetic order
- Print distinct sorted permutations with duplicates allowed in input
- Power Set in Lexicographic order
- Print array of strings in sorted order without copying one string into another
- Find a string in lexicographic order which is in between given two strings
- Generating distinct subsequences of a given string in lexicographic order
- Print all palindrome permutations of a string
- Print all permutations with repetition of characters
- Write a program to print all permutations of a given string
- Print all distinct permutations of a given string with duplicates
- Print first n distinct permutations of string using itertools in Python
- Find the n-th binary string in sorted order
- Rearrange a string in sorted order followed by the integer sum
- Check if words are sorted according to new order of alphabets
- Find alphabetical order such that words can be considered sorted