Open In App

Level order traversal with direction change after every two levels | Recursive Approach

Improve
Improve
Like Article
Like
Save
Share
Report

Given a binary tree, print the level order traversal in such a way that first two levels are printed from left to right, next two levels are printed from right to left, then next two from left to right and so on. So, the problem is to reverse the direction of level order traversal of the binary tree after every two levels.

Examples: 

Input: 
            1     
          /   \
        2       3
      /  \     /  \
     4    5    6    7
    / \  / \  / \  / \ 
   8  9 3   1 4  2 7  2
     /     / \    \
    16    17  18   19

Output:
1
2 3
7 6 5 4
2 7 2 4 1 3 9 8
16 17 18 19
In the above example, the first two levels
are printed from left to right, next two
levels are printed from right to left,
and then the last level is printed from 
left to right.

Approach: In the previous post, level order traversal using queue and stack has been done to print the elements. A recursive method has been used over here to print the elements in every level. Traverse every level in the tree, for every level, check the direction. Use a flag to know the direction of traversal in the tree. If the flag is set to true, print the nodes from right to left in the particular level. If the flag is set to false, print the nodes in that level from left to right. Initially, the flag is set to False, after every 2 levels, flag changes its value to true and vice versa. 

Below is the implementation of the above approach.

C++




// C++ program level order traversal
// with direction change
// after every two levels
#include <bits/stdc++.h>
using namespace std;
 
struct node {
    int data;
    node *left, *right;
} * temp;
 
// inserts new node
node* newNode(int data)
{
    temp = new node;
    temp->data = data;
    temp->left = temp->right = NULL;
 
    return temp;
}
 
// function to  print current level
void printCurrLevel(node* root, int level, bool flag)
{
    if (!root)
        return;
 
    if (level == 1) {
        cout << root->data << " ";
        return;
    }
 
    else {
        // If the flag is true, we have to print
        // level from RIGHT to LEFT.
        if (flag) {
            printCurrLevel(root->right, level - 1, flag);
            printCurrLevel(root->left, level - 1, flag);
        }
 
        // If the flag is false, we have to print
        // level from LEFT to RIGHT.
        else {
            printCurrLevel(root->left, level - 1, flag);
            printCurrLevel(root->right, level - 1, flag);
        }
    }
}
 
// This function returns the height of tree.
int height(node* root)
{
    if (!root)
        return 0;
 
    // left subtree
    int lh = height(root->left);
 
    // right subtree
    int rh = height(root->right);
 
    return 1 + max(lh, rh);
}
 
// Function to traverse level-wise and
// print nodes
void modifiedLevelOrder(node* root)
{
    int h = height(root);
 
    // Variable to choose direction.
    bool flag = false;
    for (int i = 1; i <= h; i++) {
        printCurrLevel(root, i, flag);
        cout << endl;
 
        // change direction after every two levels.
        if (i % 2 == 0)
            flag = !flag;
    }
}
 
// Driver Code
int main()
{
 
    // create tree that is given
    // in the example
    node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
    root->right->left = newNode(6);
    root->right->right = newNode(7);
    root->left->left->left = newNode(8);
    root->left->left->right = newNode(9);
    root->left->right->left = newNode(3);
    root->left->right->right = newNode(1);
    root->right->left->left = newNode(4);
    root->right->left->right = newNode(2);
    root->right->right->left = newNode(7);
    root->right->right->right = newNode(2);
    root->left->right->left->left = newNode(16);
    root->left->right->left->right = newNode(17);
    root->right->left->right->left = newNode(18);
    root->right->right->left->right = newNode(19);
 
    modifiedLevelOrder(root);
    return 0;
}


Java




// Java implementation of above idea
import java.util.*;
 
class GFG
{
     
static class node
{
    int data;
    node left, right;
}
static node temp;
 
// inserts new node
static node newNode(int data)
{
    temp = new node();
    temp.data = data;
    temp.left = temp.right = null;
 
    return temp;
}
 
// function to print current level
static void printCurrLevel(node root, int level, boolean flag)
{
    if (root == null)
        return;
 
    if (level == 1)
    {
            System.out.print(root.data + " ");
            return;
    }
 
    else
    {
        // If the flag is true, we have to print
        // level from RIGHT to LEFT.
        if (flag)
        {
            printCurrLevel(root.right, level - 1, flag);
            printCurrLevel(root.left, level - 1, flag);
        }
 
        // If the flag is false, we have to print
        // level from LEFT to RIGHT.
        else
        {
            printCurrLevel(root.left, level - 1, flag);
            printCurrLevel(root.right, level - 1, flag);
        }
    }
}
 
// This function returns the height of tree.
static int height(node root)
{
    if (root == null)
        return 0;
 
    // left subtree
    int lh = height(root.left);
 
    // right subtree
    int rh = height(root.right);
 
    return 1 + Math.max(lh, rh);
}
 
// Function to traverse level-wise and
// print nodes
static void modifiedLevelOrder(node root)
{
    int h = height(root);
 
    // Variable to choose direction.
    boolean flag = false;
    for (int i = 1; i <= h; i++)
    {
        printCurrLevel(root, i, flag);
        System.out.println("");
 
        // change direction after every two levels.
        if (i % 2 == 0)
            flag = !flag;
    }
}
 
// Driver Code
public static void main(String[] args)
{
    // create tree that is given
    // in the example
    node root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.left = newNode(4);
    root.left.right = newNode(5);
    root.right.left = newNode(6);
    root.right.right = newNode(7);
    root.left.left.left = newNode(8);
    root.left.left.right = newNode(9);
    root.left.right.left = newNode(3);
    root.left.right.right = newNode(1);
    root.right.left.left = newNode(4);
    root.right.left.right = newNode(2);
    root.right.right.left = newNode(7);
    root.right.right.right = newNode(2);
    root.left.right.left.left = newNode(16);
    root.left.right.left.right = newNode(17);
    root.right.left.right.left = newNode(18);
    root.right.right.left.right = newNode(19);
 
    modifiedLevelOrder(root);
    }
}
 
// This code is contributed by Princi Singh


Python3




# Python3 program level order traversal with
# direction change after every two levels
class Node:
     
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
     
# function to print current level
def printCurrLevel(root, level, flag):
 
    if root == None:
        return
 
    if level == 1:
        print(root.data, end = " ")
        return
 
    else:
         
        # If the flag is true, we have to
        # print level from RIGHT to LEFT.
        if flag:
            printCurrLevel(root.right,
                           level - 1, flag)
            printCurrLevel(root.left,
                           level - 1, flag)
 
        # If the flag is false, we have to
        # print level from LEFT to RIGHT.
        else:
            printCurrLevel(root.left,
                           level - 1, flag)
            printCurrLevel(root.right,
                           level - 1, flag)
         
# This function returns the
# height of tree.
def height(root):
 
    if root == None:
        return 0
 
    # left subtree
    lh = height(root.left)
 
    # right subtree
    rh = height(root.right)
 
    return 1 + max(lh, rh)
 
# Function to traverse level-wise
# and print nodes
def modifiedLevelOrder(root):
 
    h = height(root)
 
    # Variable to choose direction.
    flag = False
    for i in range(1, h + 1):
        printCurrLevel(root, i, flag)
        print()
 
        # change direction after every
        # two levels.
        if i % 2 == 0:
            flag = not flag
 
# Driver Code
if __name__ == "__main__":
 
    # create tree that is given
    # in the example
    root = Node(1)
    root.left = Node(2)
    root.right = Node(3)
    root.left.left = Node(4)
    root.left.right = Node(5)
    root.right.left = Node(6)
    root.right.right = Node(7)
    root.left.left.left = Node(8)
    root.left.left.right = Node(9)
    root.left.right.left = Node(3)
    root.left.right.right = Node(1)
    root.right.left.left = Node(4)
    root.right.left.right = Node(2)
    root.right.right.left = Node(7)
    root.right.right.right = Node(2)
    root.left.right.left.left = Node(16)
    root.left.right.left.right = Node(17)
    root.right.left.right.left = Node(18)
    root.right.right.left.right = Node(19)
 
    modifiedLevelOrder(root)
 
# This code is contributed by Rituraj Jain


C#




// C# implementation of above idea
using System;
 
class GFG
{
     
public class node
{
    public int data;
    public node left, right;
}
static node temp;
 
// inserts new node
static node newNode(int data)
{
    temp = new node();
    temp.data = data;
    temp.left = temp.right = null;
 
    return temp;
}
 
// function to print current level
static void printCurrLevel(node root, int level, Boolean flag)
{
    if (root == null)
        return;
 
    if (level == 1)
    {
        Console.Write(root.data + " ");
        return;
    }
 
    else
    {
        // If the flag is true, we have to print
        // level from RIGHT to LEFT.
        if (flag)
        {
            printCurrLevel(root.right, level - 1, flag);
            printCurrLevel(root.left, level - 1, flag);
        }
 
        // If the flag is false, we have to print
        // level from LEFT to RIGHT.
        else
        {
            printCurrLevel(root.left, level - 1, flag);
            printCurrLevel(root.right, level - 1, flag);
        }
    }
}
 
// This function returns the height of tree.
static int height(node root)
{
    if (root == null)
        return 0;
 
    // left subtree
    int lh = height(root.left);
 
    // right subtree
    int rh = height(root.right);
 
    return 1 + Math.Max(lh, rh);
}
 
// Function to traverse level-wise and
// print nodes
static void modifiedLevelOrder(node root)
{
    int h = height(root);
 
    // Variable to choose direction.
    Boolean flag = false;
    for (int i = 1; i <= h; i++)
    {
        printCurrLevel(root, i, flag);
        Console.WriteLine("");
 
        // change direction after every two levels.
        if (i % 2 == 0)
            flag = !flag;
    }
}
 
// Driver Code
public static void Main(String[] args)
{
    // create tree that is given
    // in the example
    node root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.left = newNode(4);
    root.left.right = newNode(5);
    root.right.left = newNode(6);
    root.right.right = newNode(7);
    root.left.left.left = newNode(8);
    root.left.left.right = newNode(9);
    root.left.right.left = newNode(3);
    root.left.right.right = newNode(1);
    root.right.left.left = newNode(4);
    root.right.left.right = newNode(2);
    root.right.right.left = newNode(7);
    root.right.right.right = newNode(2);
    root.left.right.left.left = newNode(16);
    root.left.right.left.right = newNode(17);
    root.right.left.right.left = newNode(18);
    root.right.right.left.right = newNode(19);
 
    modifiedLevelOrder(root);
}
}
 
/* This code is contributed by PrinciRaj1992 */


Javascript




<script>
    // Javascript implementation of above idea
    class node
    {
        constructor(data) {
           this.left = null;
           this.right = null;
           this.data = data;
        }
    }
     
    let temp;
  
    // inserts new node
    function newNode(data)
    {
        temp = new node(data);
        return temp;
    }
 
    // function to print current level
    function printCurrLevel(root, level, flag)
    {
        if (root == null)
            return;
 
        if (level == 1)
        {
            document.write(root.data + " ");
            return;
        }
 
        else
        {
            // If the flag is true, we have to print
            // level from RIGHT to LEFT.
            if (flag)
            {
                printCurrLevel(root.right, level - 1, flag);
                printCurrLevel(root.left, level - 1, flag);
            }
 
            // If the flag is false, we have to print
            // level from LEFT to RIGHT.
            else
            {
                printCurrLevel(root.left, level - 1, flag);
                printCurrLevel(root.right, level - 1, flag);
            }
        }
    }
 
    // This function returns the height of tree.
    function height(root)
    {
        if (root == null)
            return 0;
 
        // left subtree
        let lh = height(root.left);
 
        // right subtree
        let rh = height(root.right);
 
        return 1 + Math.max(lh, rh);
    }
 
    // Function to traverse level-wise and
    // print nodes
    function modifiedLevelOrder(root)
    {
        let h = height(root);
 
        // Variable to choose direction.
        let flag = false;
        for (let i = 1; i <= h; i++)
        {
            printCurrLevel(root, i, flag);
            document.write("</br>");
 
            // change direction after every two levels.
            if (i % 2 == 0)
                flag = !flag;
        }
    }
     
    // create tree that is given
    // in the example
    let root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.left = newNode(4);
    root.left.right = newNode(5);
    root.right.left = newNode(6);
    root.right.right = newNode(7);
    root.left.left.left = newNode(8);
    root.left.left.right = newNode(9);
    root.left.right.left = newNode(3);
    root.left.right.right = newNode(1);
    root.right.left.left = newNode(4);
    root.right.left.right = newNode(2);
    root.right.right.left = newNode(7);
    root.right.right.right = newNode(2);
    root.left.right.left.left = newNode(16);
    root.left.right.left.right = newNode(17);
    root.right.left.right.left = newNode(18);
    root.right.right.left.right = newNode(19);
  
    modifiedLevelOrder(root);
 
// This code is contributed by rameshtravel07.
</script>


Output

1 
2 3 
7 6 5 4 
2 7 2 4 1 3 9 8 
16 17 18 19 

Complexity Analysis:

  • Time Complexity : O(N)
  • Auxiliary Space: O(N) 


Last Updated : 26 Aug, 2022
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads