Given a tree with v vertices, find the level of each node in a tree from the source node.
Examples:
Input :

Output : Node Level
0 0
1 1
2 1
3 2
4 2
5 2
6 2
7 3
Explanation :

Input:

Output : Node Level
0 0
1 1
2 1
3 2
4 2
Explanation:

Approach:
BFS(Breadth-First Search) is a graph traversal technique where a node and its neighbours are visited first and then the neighbours of neighbours. In simple terms, it traverses level-wise from the source. First, it traverses level 1 nodes (direct neighbours of source node) and then level 2 nodes (neighbours of source node) and so on. The BFS can be used to determine the level of each node from a given source node.
Algorithm:
- Create the tree, a queue to store the nodes and insert the root or starting node in the queue. Create an extra array level of size v (number of vertices) and create a visited array.
- Run a loop while size of queue is greater than 0.
- Mark the current node as visited.
- Pop one node from the queue and insert its childrens (if present) and update the size of the inserted node as level[child] = level[node] + 1.
- Print all the node and its level.
Implementation:
C++
#include <bits/stdc++.h>
using namespace std;
void printLevels(vector< int > graph[], int V, int x)
{
int level[V];
bool marked[V];
queue< int > que;
que.push(x);
level[x] = 0;
marked[x] = true ;
while (!que.empty()) {
x = que.front();
que.pop();
for ( int i = 0; i < graph[x].size(); i++) {
int b = graph[x][i];
if (!marked[b]) {
que.push(b);
level[b] = level[x] + 1;
marked[b] = true ;
}
}
}
cout << "Nodes"
<< " "
<< "Level" << endl;
for ( int i = 0; i < V; i++)
cout << " " << i << " --> " << level[i] << endl;
}
int main()
{
int V = 8;
vector< int > graph[V];
graph[0].push_back(1);
graph[0].push_back(2);
graph[1].push_back(3);
graph[1].push_back(4);
graph[1].push_back(5);
graph[2].push_back(5);
graph[2].push_back(6);
graph[6].push_back(7);
printLevels(graph, V, 0);
return 0;
}
|
Java
import java.util.*;
class GFG {
static void printLevels(Vector<Vector<Integer> > graph,
int V, int x)
{
int level[] = new int [V];
boolean marked[] = new boolean [V];
Queue<Integer> que = new LinkedList<Integer>();
que.add(x);
level[x] = 0 ;
marked[x] = true ;
while (que.size() > 0 ) {
x = que.peek();
que.remove();
for ( int i = 0 ; i < graph.get(x).size(); i++) {
int b = graph.get(x).get(i);
if (!marked[b]) {
que.add(b);
level[b] = level[x] + 1 ;
marked[b] = true ;
}
}
}
System.out.println( "Nodes"
+ " "
+ "Level" );
for ( int i = 0 ; i < V; i++)
System.out.println( " " + i + " --> "
+ level[i]);
}
public static void main(String args[])
{
int V = 8 ;
Vector<Vector<Integer> > graph
= new Vector<Vector<Integer> >();
for ( int i = 0 ; i < V + 1 ; i++)
graph.add( new Vector<Integer>());
graph.get( 0 ).add( 1 );
graph.get( 0 ).add( 2 );
graph.get( 1 ).add( 3 );
graph.get( 1 ).add( 4 );
graph.get( 1 ).add( 5 );
graph.get( 2 ).add( 5 );
graph.get( 2 ).add( 6 );
graph.get( 6 ).add( 7 );
printLevels(graph, V, 0 );
}
}
|
Python3
import queue
def printLevels(graph, V, x):
level = [ None ] * V
marked = [ False ] * V
que = queue.Queue()
que.put(x)
level[x] = 0
marked[x] = True
while ( not que.empty()):
x = que.get()
for i in range ( len (graph[x])):
b = graph[x][i]
if ( not marked[b]):
que.put(b)
level[b] = level[x] + 1
marked[b] = True
print ( "Nodes" , " " , "Level" )
for i in range (V):
print ( " " , i, " --> " , level[i])
if __name__ = = '__main__' :
V = 8
graph = [[] for i in range (V)]
graph[ 0 ].append( 1 )
graph[ 0 ].append( 2 )
graph[ 1 ].append( 3 )
graph[ 1 ].append( 4 )
graph[ 1 ].append( 5 )
graph[ 2 ].append( 5 )
graph[ 2 ].append( 6 )
graph[ 6 ].append( 7 )
printLevels(graph, V, 0 )
|
C#
using System;
using System.Collections.Generic;
class GFG {
static void printLevels(List<List< int > > graph, int V,
int x)
{
int [] level = new int [V];
Boolean[] marked = new Boolean[V];
Queue< int > que = new Queue< int >();
que.Enqueue(x);
level[x] = 0;
marked[x] = true ;
while (que.Count > 0) {
x = que.Peek();
que.Dequeue();
for ( int i = 0; i < graph[x].Count; i++) {
int b = graph[x][i];
if (!marked[b]) {
que.Enqueue(b);
level[b] = level[x] + 1;
marked[b] = true ;
}
}
}
Console.WriteLine( "Nodes"
+ " "
+ "Level" );
for ( int i = 0; i < V; i++)
Console.WriteLine( " " + i + " --> " + level[i]);
}
public static void Main(String[] args)
{
int V = 8;
List<List< int > > graph = new List<List< int > >();
for ( int i = 0; i < V + 1; i++)
graph.Add( new List< int >());
graph[0].Add(1);
graph[0].Add(2);
graph[1].Add(3);
graph[1].Add(4);
graph[1].Add(5);
graph[2].Add(5);
graph[2].Add(6);
graph[6].Add(7);
printLevels(graph, V, 0);
}
}
|
Javascript
<script>
function printLevels(graph, V, x)
{
var level = Array(V);
var marked = Array(V).fill( false );
var que = [];
que.push(x);
level[x] = 0;
marked[x] = true ;
while (que.length > 0)
{
x = que[0];
que.shift();
for ( var i = 0; i < graph[x].length; i++)
{
var b = graph[x][i];
if (!marked[b])
{
que.push(b);
level[b] = level[x] + 1;
marked[b] = true ;
}
}
}
document.write( "Nodes" + " " + "Level<br>" );
for ( var i = 0; i < V; i++)
document.write( " " + i + " --> " + level[i]+ "<br>" );
}
var V = 8;
var graph = Array.from(Array(V+1), ()=>Array());
graph[0].push(1);
graph[0].push(2);
graph[1].push(3);
graph[1].push(4);
graph[1].push(5);
graph[2].push(5);
graph[2].push(6);
graph[6].push(7);
printLevels(graph, V, 0);
</script>
|
Output
Nodes Level
0 --> 0
1 --> 1
2 --> 1
3 --> 2
4 --> 2
5 --> 2
6 --> 2
7 --> 3
Complexity Analysis:
- Time Complexity: O(n).
In BFS traversal every node is visited only once, so Time Complexity is O(n).
- Space Complexity: O(n).
The space is required to store the nodes in a queue.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
01 Aug, 2022
Like Article
Save Article